Sumitomo Electric Technical Review

SUMITOMO ELECTRIC TECHNICAL REVIEW

A journal of technical papers explaining the Sumitomo Electric’s technologies. Technical papers are available in PDF format.

A journal of technical papers explaining the Sumitomo Electric’s technologies. Technical papers are available in PDF format.

Registration of public notification

If you register your e-mail address, we will notify you when the latest issue is published. If you wish, please register from the registration form.
To delete your registration, please visit here.

Genre

All

Back Number

All

April 2019 No.88

FEATURED TOPIC: Our Endeavor in the Automotive Business to Achieve VISION 2022

Prefatory Note: Our Endeavor in the Automotive Business to Achieve VISION 2022

The automotive industry has entered a major once-ina-century revolutionary era characterized by the connected, autonomous, shared/service, and electric (CASE) strategy. R&D efforts are strongly directed towards the next-generation motorized society. Meanwhile, global automobile sales are expected to continuously increase. At the same time, the market for environmentally friendly vehicles is forecast to grow substantially due to tighter environmental regulations to be enforced in many countries.

Future In-Vehicle Electronic Platform

Automobiles and the environment surrounding them have been rapidly changing. The value that vehicles offer will change significantly as the concept of “connected” is added to the basic vehicle functions of “driving,” “turning,” and “stopping.” In short, vehicles will evolve from a simple means of transportation to a social terminal that provides mobility and various related services. Thus, not only individual users, but also the whole society may benefit from the added value. As vehicles are used as social terminals that will create new industries in the automobile society of the 2030s, new values may arise as management resources. Therefore, it is necessary to build key technologies adaptable to the newly created social needs in addition to the functional value of conventional vehicles. This paper outlines a next-generation in-vehicle electronic platform that is currently being developed as a new key technology for the era of connected cars by integrating our social infrastructure and in-vehicle technologies.

Development for Expansion of Aluminum Wiring Harness

As the demand for the reduction of CO2 emissions from vehicles is ever increasing, lightweight wiring harnesses have been in high demand. Effective weight reduction can be expected by replacing conventional copper electric wires with aluminum electric wires. However, aluminum wires have several drawbacks such as low electrical conductivity and low tensile strength, as well as the thick oxide film on the surface and galvanic corrosion. To solve these problems, we have developed an aluminum alloy with improved electrical conductivity and tensile strength. We have also developed a unique terminal for a splice that maintains low contact resistance and sufficient wire retention force even on a thick oxide film. We have established an anti-corrosion technology that prevents galvanic corrosion by coating a new anti-corrosive onto the crimped joint of the terminal. This paper explains respective solutions in detail.

Digital Twin Environment to Integrate Vehicle Simulation and Physical Verification

In-vehicle control software has become complex, and powertrains have been diversified due to the advancement of vehicle electrification pushed by tightening environmental regulations. Nevertheless, we are required to shorten our development time and propose driver-friendly vehicle systems. We have worked on the development of mechanical and electrical co-simulation techniques as well as simulation-based quantitative evaluation methods for the trade-off between power consumption and ride comfort. To strengthen our system design and solution proposal capabilities, we have also been developing a whole vehicle simulation technique. This paper introduces our virtual car that can be connected with the real driving environment, focusing on an electric vehicle charging system.

Physical Layer Simulation Technology for Automotive Ethernet

The introduction of high-speed automotive Ethernet to in-vehicle networks has been accelerated by the increase of communication volume resulting from the spread of advanced driving assist systems (ADAS) including autonomous driving. To ensure safety, in-vehicle network products require communication reliability even under severe conditions associated with extreme heat and noise, and therefore electromagnetic compatibility (EMC) performance is one of the important factors. However, conventional trial EMC countermeasures require a lot of efforts and development costs to ensure EMC performance. We have developed a simulation technology to efficiently verify the EMC performance of automotive Ethernet communication systems under various conditions by constructing the physical layer model of a communication system composed of connectors, wire harnesses, and electronic control units.

Wiring Harness and Connector for Electric and Hybrid Electric Vehicles - Pipe Shielded Wiring Harness, Power Cable, and Direct Connector -

Sumitomo Electric Industries, Ltd. has developed and produced high-voltage wiring harnesses and connectors used for electric drivetrains, and these products have been used in many hybrid electric vehicles (HEVs). For the past quarter century, HEVs have been actively developed to prevent global warming caused by CO2 emissions. The development of electric vehicles (EVs) that require no internal combustion engines has also been accelerated. An electric drivetrain used in an EV mainly consists of a highvoltage battery, inverters, and motors. This paper introduces our products that have been developed for HEVs and are also applicable to EVs. These products include a pipe shielded wiring harness applied to the aluminum wire between the high-voltage battery and the inverters as well as a power cable and direct connector that connect the inverters to the motors.

Reactor for Boost Converter for Electric and Hybrid Electric Vehicles

The number of electrified vehicles, such as electric and hybrid electric vehicles, has been increasing rapidly due to concerns about the environment, energy savings, and rising oil prices. To promote the use of these vehicles, motorizing systems need to be reduced in size and weight while also ensuring running and acceleration performance comparable to that of gasoline vehicles. We have developed a compact and lightweight reactor, a key component for a boost converter used in the motorizing system. Using a new magnetic material and heat dissipation structure, we have succeeded in the size and weight reduction of the reactor by 10% while maintaining the same performance level as conventional reactors.

Battery Wiring Module for Electric and Hybrid Electric Vehicles

We have been producing wiring modules for high-voltage battery packs used in electrified vehicles. With the recent rapid expansion of the market, we have been promoting product development for electric vehicle (EV) applications. The number of battery cells used in an EV battery pack increases to extend the mileage, which in turn requires a reduction in the volume of battery wiring parts. For the widespread use of EVs, the safety of battery packs is another important factor. This report introduces our development on battery wiring modules for EVs.

Automotive 48-Volt Converter

In order to meet the CO2 emission target, the electrification of powertrains is accelerating in each country. The 48-V mild hybrid electric vehicle (HEV) can reduce CO2 emissions at lower costs than other systems, and therefore it is expected to become popular mainly in Europe. DC/DC converters installed in the mild HEV are required to supply high power with high reliability. We have developed a power control technology and achieved a high efficiency and high response compact converter. This paper introduces the features of the converter.

Rectangular Magnet Wire for Electric and Hybrid Electric Inverter-Drive Motors

A surge current caused by a high-voltage inverter-drive motor system damages the insulation performance of magnet wires. Sumitomo Electric Industries, Ltd. has developed a novel magnet wire that has a uniform micro-closed cell structure in the insulation film. This paper discusses the excellent dielectric properties of the new magnet wire.

CHAdeMO-Conformity High-Power Charger Connector Assembly for Over 100 kWClass EV Charge

There are two categories for electric vehicles charging systems. One is normal charging (AC) and the other is quick charging (DC). In recent years, the application of the latter has been expanding due to an increase in the capacity of in-vehicle batteries. In 2011, we began supplying the SEVD series as a CHAdeMO-conformity 50 kW-class quick charger cable assembly and have since delivered 27,000 units mainly in Europe, U.S.A. and Japan. Our connectors have a high reputation for superior safety and operability. We responded quickly to the CHAdeMO specification ver. 1.2, which described high output, and began shipping SEVD-11 for over 100 kW-class high power charger connectors in the beginning of 2018.

Battery State Estimation System for Automobiles

Recently lithium-ion batteries have been widely used for electric vehicles. The states of batteries should be estimated accurately for their safe and effective use. We have developed a battery state estimation system that has a parameter estimation algorithm for a battery model. This paper describes the estimation results, including the state of charge (SOC) and state of health (SOH) for each battery cell, and presents the system that transmits these results to a server.

TAB-Lead for Automotive Lithium-ion Batteries

Tab-lead is an electrical lead wire used for a pouch lithium-ion battery (LIB) that features lightweight and high heat dissipation. Sumitomo Electric Industries, Ltd. has released the world’s first tab-lead in the late 1990s. Tab-leads have since been used for pouch LIBs that are applied to small electronic devices such as personal computers and cellular phones because of their high reliability. Since pouch LIBs are lightweight even if upsized for electric vehicle and hybrid electric vehicle applications, they have been in high demand. In light of this, we have developed a tab-lead for automorive use that offers high permissible current and long-term reliability.

High Current SiC Transistors for Automotive Applications

As the electrification of automobiles advances, the efficiency of power devices used for electrical power control becomes increasingly important. Although silicon (Si) power devices have been commonly used, the adoption of silicon carbide (SiC) power devices, which are more power efficient than Si devices, have been accelerating. Against this backdrop, we have focused on the development of SiC metal-oxide-semiconductor field effect transistors (MOSFETs) with trench gates for high efficiency. Our trench MOSFETs can reduce the on-resistance with the V-groove structure and achieve a high breakdown voltage due to the electric field alleviating regions implanted around the trench bottom. Here we report on our V-groove trench MOSFETs (VMOSFETs) that have a rated voltage of 1200 V and current of 200 A as required for high current automotive applications. The VMOSFETs exhibit both a low specific on-resistance of 3.4 mΩ cm2 and a high breakdown voltage of 1660 V. In addition, the VMOSFETs also achieve high speed switching due to the electric field alleviating regions that reduce the parasitic capacitance.

Traffic Management System toward Connected and Automated Vehicles Era

Traffic accidents and congestion problems have been reduced by the efforts of public and private sectors. Sumitomo Electric Industries, Ltd., a leading supplier of intelligent transport systems, has contributed to the development and installation of wide area traffic management systems. For more safety, infrastructure-vehicle cooperative driving safety support systems using sensing and wireless communication technologies are expected to be one of the best solutions to traffic problems particularly near intersections. To meet these needs in the era of connected and automated vehicles, we have been researching and developing new technologies utilizing artificial intelligence and simulations. This paper reports on our previous and future efforts for advanced traffic management systems.

Intrusion Detection System for In-Vehicle Networks

In light of the security incident of the Jeep Cherokee in 2015, where a vehicle was illegally controlled remotely using spoofing messages inserted via a public mobile network, security measures have become one of the most crucial issues in the realization of autonomous driving and connected cars. Taking security measures for each unknown cyberattack requires quick detection of attacks that happen throughout the life cycle of the vehicles. This paper introduces an intrusion detection system (IDS) to detect spoofing messages at the central gateway. Additionally, we report on the detection performance of the system using messages from an actual in-vehicle network.

A Proposal of the Device Disabler for Controller Area Network

Recently, quite a number of security attacks against Controller Area Network (CAN) have been reported. Many automotive companies are planning to adopt security countermeasures to strengthen security of their in-vehicle systems while saving the costs. This paper proposes a method to block unauthorized CAN-bus access using our enhanced CAN controller that prevents the transmission of messages from a malicious electronic control unit. We demonstrate the effectiveness of our device disabler on a CAN with Flexible Date rate buses.

Evaluation of 700 MHz Band Radio Resource Allocation Algorithm and Installation Operation of Roadside Units

In the urban area where the wireless roadside units of 700-MHz band intelligent transport systems (ITS) are densely installed, an operation method is required to install the units as many as possible by efficiently allocating limited radio resources without interference. This paper evaluates the radio resource allocation algorithm that utilizes simulation and proposes an installation and operation method devised based on the evaluation.

24-GHz Band Radar for Driving Safety Support Systems

We are developing driving safety support systems to reduce traffic accidents. One function of this system is to provide information on the presence of pedestrians on a crosswalk to a vehicle turning right at an intersection and call attention to the driver. We have developed a 24-GHz band radar to detect pedestrians as a roadside sensor, and started shipping it in March 2018. The radar features robustness against changes in weather and sunshine conditions, high performance in pedestrian detection, and a wide detection area. This paper introduces the radar and shows the result of a field test.

Millimeter-Wave Automotive Antenna Using Low-Loss Fluoro-resin Substrates

In order to realize autonomous driving, millimeter-wave radar will become more and more important. Being used in the radar, printed circuit boards (PCBs) are required to have low-loss characteristics, because transmission loss is very high in the millimeterwave band. We have been developing low-loss PCBs made of fluororesin. We evaluated fluororesin substrates and confirmed their favorable transmission characteristics. We also prototyped an array antenna for automotive millimeter-wave radar using the substrate and successfully downsized the antenna surface area by approximately 40% compared with the conventional ones in the market.

Virtual Power Plants Using Electric Vehicle and Plug-in Hybrid Vehicle Batteries

Sumitomo Electric Industries, Ltd. has conducted a virtual power plant pilot program jointly with Nissan Motor Co., Ltd. and Kansai Electric Power Co., Inc. (KEPCO). In this project, 60 electric vehicles (EVs) parked at home and KEPCO were linked to the virtual power plant demonstration system, which simultaneously controls vehicle battery charge. This system is expected to enable the effective use of renewable energy, mitigating its output fluctuation. Through the adjustment of power supply and demand, we will add value to EVs.

Highly Heat-Resistant Flexible Flat Cable for Automotive Applications

The flexible flat cable has been used for electric wiring of electronic appliances. Along with the increase of electronic equipment installation in automobiles, the application of flexible flat cables has been increasing. Sumitomo Electric Industries, Ltd. has successfully produced a new flexible flat cable for automotive use featuring high heat resistance up to 150°C.

In-Vehicle Application of Flexible FUREKI

Sumitomo Electric Industries Ltd. started the development of the flexible wiring board “FUREKI” in the 1960s. Being light, thin, and highly flexible, FUREKI was well received by the market, and has been in high demand for the internal wiring of handheld units since the 1980s. Combining new materials and new technologies (such as connection technologies), Sumitomo Electric has added new products to the FUREKI series. This paper introduces our efforts for the application of FUREKI to automobiles.

Features and Vehicle Application of Heat Resistant Die Cast Magnesium Alloy

Since the successful development of the world’s first AZ91 alloy sheet, which has high strength and superior corrosion resistance, we started the magnesium alloy business with the AZ91 alloy sheet used for the case body of mobile electronic devices. For application to transportation vehicle parts, however, the properties of AZ91 were not sufficient and we launched the development of new Mg alloys. Recently we have successfully developed a high-temperature creep resistant Mg alloy that can be applied to automobile powertrain components through a collaborative research with the University of Toyama. The new alloy has overcome the drawbacks of conventional creep resistant Mg alloys, such as the low castability and inferior recyclability. This paper introduces major properties of the developed alloys, which are necessary for practical applications in transportation vehicle parts.

Noise, Vibration, and Harshness Analysis Technique Using a Full Vehicle Model

Automakers have launched environment-friendly and fuel-efficient cars into the market. In such cars, decreased number of cylinders and expanded lock-up range are used to improve fuel efficiency. However, particularly in a vehicle with a 3-cylinder engine and continuously variable transmission, vehicle body vibration is aggravated by the influence of suspension resonance at the start of lock-up. To propose anti-vibration products that reduce the vibration, an analysis technique that covers drivelines and suspension systems is essential. Therefore, we have built a full vehicle analysis technique for evaluating a whole vehicle. With this technique, the reduction of vibration at the time of lock-up was examined using hydraulic strut mounts and the effects were confirmed in the actual vehicle evaluation. This full vehicle analysis technique is one of the fundamental technologies for our future product development.

Lightweight Filler Neck Hose for Reducing Environmental Load

For automotive fuel piping, we have been working on the reduction of fuel permeation to comply with regulations for hydrocarbon evaporation including low emission vehicle standards in the North America. Concurrently, in order to comply with the tightening CO2 emission control, we have also been working on the reduction of CO2 emissions by improving fuel efficiency through vehicle weight reduction. For this purpose, we have promoted the replacement of rubber hoses used for filler neck piping with those made a low fuel permeation material, and the metal filler pipe with a resin pipe. The replacement to the resin filler pipe involved the development of modules that consist of filler pipes and hoses. This paper describes these development efforts.

Improvement of Noise Absorbing Thermal Conductance “Magnetic Induction Foaming” for In-Vehicle Use

The automotive sector is currently undergoing a major transformation. This structural change is called “CASE” (connected, autonomous, shared, electric), and the electrification and digitization of vehicles are advancing rapidly. Under these circumstances, we have developed a magnetic induction foaming (MIF) technique for improving the thermal conductivity of sound absorbing polyurethane foam through magnetic field orientation, and succeeded in mass production of soundproofing products capable of achieving both thermal and noise countermeasures for in-vehicle electronics products. Recently, there has been an increasing need for heat dissipation and noise reduction for large products such as electric vehicle drive motors, in addition to in-vehicle small products. This time, focusing on the heat transfer structure of MIF, the heat dissipation property was improved by 2.5 times (up to 100 times of common urethane). Applying this method, this paper finds the possibility of MIF as a soundproofing cooling device that further enhances the air-cooling performance in addition to the soundproofing effect by covering the motor case.

Humidity-Aging Resistant Steel Cord

Steel cords are widely used as reinforcing material for automobile tires. The adhesion of steel cord to rubber and long-term durability are increasingly critical factors not only in terms of fuel efficiency improvement but also the technological advancement of automobiles such as electric vehicles and automated driving. Focusing on the humidity heat resistance as an indicator of longterm durability, we have developed a ternary alloy plating with cobalt (Co) added as the third element in the brass plating of ordinary steel cord, and established its mass production technology ahead of the world. In this development, we also clarified the plating-rubber adhesion and its deterioration mechanism, enabling quantitative and quick evaluation of the effect of adhesion performance improvement. This innovative plating technology has substantially increased the durability of tires compared to conventional ones, being keenly anticipated by customers.

Diamond-like Carbon Film for Bearing Parts and Its Mass Production Technology

Active efforts have been made to create environmentally friendly products in the automobile market. Under this circumstance, parts that make up an automobile need to maintain their functions in harsh environments, requiring even higher durability than ever before. To meet this challenge, we have developed a diamond-like carbon (DLC) film that has an excellent rolling fatigue resistance for bearing parts. We also started the mass production of the DLC film coating for bearing parts by overcoming production technology challenges, and achieved both mass productivity and cost efficiency.

100 Gbps Differential Transmission Metal Cable for Data Centers

There has been growing demand for cloud servers due to the widespread use of IoT and smart devices. This has increased the demand for higher signal processing speed, namely, signal transmission speed. We already mass-produce metal cables for 40 Gbps differential transmission. We have developed a metal cable for 100 Gbps differential transmission designed for the next-generation communication protocol.

New Coated Carbide Grade AC5015S and AC5025S for Exotic Alloys Tuning

Exotic alloys such as Ni-based alloys, cobalt (Co)-based alloys, and titanium (Ti) alloys are often used for equipment and parts used in the aircraft and auto industries due to their superior heat resistance and corrosion resistance. There has been growing demand for tools for machining these alloys.

Copyright of the paper contained in SUMITOMO ELECTRIC TECHNICAL REVIEW belongs to Sumitomo Electric Industries, Ltd.
The paper is to be used solely for private, reference purpose, and reproduction without the permission of the copyright holder is prohibited.

Meet the Authors of the SUMITOMO ELECTRIC TECHNICAL REVIEW

We at Sumitomo Electric Group are driven to pursue technological innovations to create value for a better world.

Learn more

The History of SUMITOMO ELECTRIC TECHNICAL REVIEW

Learn more