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FEATURED TOPIC

1. Introduction

Modern vehicles have 70 to 100 embedded controllers 
known as electronic control units (ECUs) connected via 
in-vehicle networks. These ECUs achieve safety driving 
and convenience by sharing control data with external 
services via networks in and outside of the vehicle. 
Meanwhile, the possibility of cyberattacks has been pointed 
out, in which the vehicle’s communications with the afore-
mentioned external services are abused for unauthorized 
remote control over the vehicle. Countering cyberattacks 
has become an urgent issue.(1) In order to take suitable 
security measures to protect vehicles from cyberattacks, it 
is necessary to detect attacks on the vehicles. An intrusion 
detection system (IDS) is known as a means to serve for 
this purpose. The product life of a general vehicle model is 
more than 10 years. This implies that the vehicle would be 
subject to cyberattacks that are unknown at the time of 
development. Consequently, it is critical for an in-vehicle 
IDS to detect unknown cyberattacks. To detect unknown 
cyberattacks, an anomaly-based IDS is effective, detecting 
attacks based on the degree of deviation from the normal 
state of the monitored subject. However, research on 
conventional anomaly-based IDSs has revealed that they 
do not do well in identifying spoofing messages that cyber 
attackers send and insert in in-vehicle networks. By identi-
fying inserted spoofing messages, it becomes possible to 
reduce the time taken before implementing concrete coun-
termeasures and to delimit the scope of the countermea-
sures. Therefore, this paper proposes an anomaly-based 
detection system with a high detection capability for moni-
toring control data contained in the payload. In addition, 
the detection performance of this detection system is also 
reported, being evaluated with traffic data under the 
Controller Area Network (CAN) protocol commonly used 
by in-vehicle networks.

2. CAN Protocol and Security Threats

2-1 Features of CAN
The CAN protocol and the CAN with Flexible Data 

Rate (CAN FD) protocol exist. The CAN protocol was 

standardized by ISO 11898-1 (2003).(2) The CAN FD 
protocol was standardized by ISO 11898-1 (2015)(3) as a 
revision to ISO 11898-1 (2003). These protocols use a bus 
topology with multiple nodes (ECUs). Of these nodes, one 
that has obtained the transmission right through bus arbi-
tration broadcasts a payload comprised of up to 8 bytes 
(CAN) or 64 bytes (CAN FD) to communicate low-latency 
messages for control systems.
2-2 Communication characteristics

Over CAN, messages are sent in the CAN frame 
format provided with a CAN-ID, which is a unique identi-
fier over an in-vehicle network, in two patterns. One is a 
transmission pattern used to send CAN frames cyclically 
for the notification of key control information, such as the 
vehicle speed, engine speed, and accelerator position. The 
other is a transmission pattern intended for noncyclic 
messages for the notification of events, such as unlocking 
and locking of the doors.
2-3 Network configuration

The CAN protocols use a bus topology. The maximum 
number of connected ECUs per bus is limited. For this 
reason, systems that use many ECUs make up a network by 
incorporating gateways to relay from one bus to another, as 
shown in Fig. 1 (a). With these systems, the presence of 
multiple gateways between buses results in an increasing 
communication delay. Figure 1 (b) illustrates a network 
that incorporates a central gateway, in which the network 
consists of sub-networks assigned to different functional 
lines. Connecting these sub-networks with a single gateway 
reduces communication delay.
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2-4 Security threats
Koscher et al. pointed out the following three vulnera-

bilities of the CAN protocols(4): (1) control information on a 
network can be easily analyzed; (2) spoofing messages can 
be easily inserted into the network; and (3) the CAN proto-
cols are vulnerable to denial-of-service (DoS) attacks. In 
this regard, spoofing messages are inserted or DoS attacks 
are made via an attacker ECU connected to the CAN bus, 
as represented in Fig. 2. The attacker ECU is a normal 
ECU until its firmware is tampered with or an unauthorized 
ECU connected to the network.

3. In-Vehicle Network Security Measures

3-1 Conventional technology
Studies on security measures for in-vehicle networks 

are divided into the following two classes. Vehicles with a 
long product life require an IDS to ensure continued secu-
rity measures even when its secure communications are 
nullified by an unknown cyberattack.
(A) Secure communications
 Security measures at the level of network protocol
(B) IDS
  Designed to operate at a higher level than the network 

protocol to detect dubious operations of applications or 
networks

3-2 IDS
Two types of IDSs exist: signature-based and anom-

aly-based. These systems detect an intrusion by detecting 
dubious behaviors of the monitored subject. The signature-
based system defines examples of anomalous usage of the 
monitored subject and detects operations that coincide with 
the definition of dubious. The anomaly-based system 
defines normal operations of the monitored subject and 
detects those that depart from the definition of dubious. 
Unknown cyberattacks can only be detected by the anom-
aly-based detection system.

4. In-Vehicle IDS

4-1 Newly developed system
Sumitomo Electric Industries, Ltd. is developing an 

anomaly-based in-vehicle IDS, which has three monitoring 
levels distinguished according to the constituent elements of 
the in-vehicle network, as shown in Fig. 3. At higher moni-
toring levels, the system monitors splintered subjects, facili-
tating the identification of the attacked subject. As a result, it 
becomes easier to develop specific measures to counter the 
attack. However, this requires the system to monitor an 

increasing overall number of subjects. Consequently, in an 
on-board environment, which is subject to memory capacity 
and CPU speed limitations, it is difficult for a high-level 
monitoring system to monitor the entire in-vehicle network 
if no other monitoring system is used. Sumitomo Electric’s 
system combines the above-mentioned three monitoring 
levels to apply a low-level system to monitor the entire 
in-vehicle network and a high-level system to monitor 
specific critical subjects in the vehicle.

4-2 Shortcomings of conventional in-vehicle IDSs
One challenge facing conventional in-vehicle IDSs is 

their low capability to detect spoofing messages. Of 
conventional systems, those which monitor message 
communication characteristics(5) are unlikely to detect and 
distinguish spoofing messages from normal messages when 
a cyberattack occurs. Detection systems that monitor 
sensor-based control data,(6) in which the value contained in 
the payload shifts smoothly, fail to detect spoofing 
messages if the monitored control data is slightly and 
repeatedly tampered with.

5. Proposed System

5-1 CDEC
As a solution to the low performance of conventional 

in-vehicle IDSs to detect spoofing messages, this paper 
proposes Control Data Estimation for anomaly detection 
with Correlation data (CDEC),(7) which monitors sensor-
based control data contained in the message payload, as 
discussed in Section 5-2 “Application model.” To monitor 
control data, CDEC uses a group of control data correlated 
with the monitored control data. As such, if many sets of 
correlated control data are obtained within the vehicle, 
CDEC exhibits improved performance to detect spoofing 
messages. For this reason, for this proposed system, it is 
desirable to monitor control data at a location suitable for 
accessing many sub-networks of the in-vehicle network, 
such as in the central gateway.
5-2 Application model

The proposed system consists of three functions, as 
shown in Fig. 4. The divider, when a message that contains 
control data correlated with the monitored control data is 
received, memorizes the correlated control data contained 
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in the payload. The estimator, when a message that contains 
the monitored control data is received, calculates an esti-
mate of the monitored control data based on the groups of 
correlated control data stored in memory, via the vehicle 
data model described in Section 5-3. When the estimate of 
the monitored control data has been calculated, the evalu-
ator compares, with a threshold, the difference between the 
current value of the monitored control data and the esti-
mate. If the difference is below the threshold, the evaluator 
determines the monitored control data to be normal. If the 
threshold is exceeded, the evaluator determines the moni-
tored control data to be anomalous.

5-3 Vehicle data model
A vehicle data model is used to calculate estimates of 

the monitored control data based on groups of correlated 
control data. Learning for the vehicle data model proceeds 
in two stages. The first stage is correlation analysis,*1 which 
extracts groups of control data correlated with the moni-
tored control data from the traffic data on the in-vehicle 
network. In the second stage, learning for the vehicle data 
model takes place, determining vehicle data model parame-
ters by using the monitored control data and the groups of 
correlated control data. The proposed system uses a regres-
sion model*2 as the vehicle data model. For the regression 
model, references (8) and (9) provide detailed explanations.

6. Evaluation

6-1 Learning for vehicle data model and estimation 
accuracy
Eight types of sensor-based control data that indicate 

vehicle driving characteristics were used to evaluate 
learning feasibility for the vehicle data model required for 
the proposed system and the model’s estimation accuracy. 
The traffic data of the in-vehicle network was used to learn 
each set of control data for the vehicle data model, as 
described in Section 5-3 “Vehicle data model.” The propor-
tion of the root mean square (RMS) of the estimated differ-
ence to the variable range of each set of control data was 
used as an evaluation index of estimation accuracy.

Figure 5 represents the evaluation results. First, it was 
confirmed that learning for the vehicle data model was 
possible using the traffic data of the in-vehicle network for 

all of the eight types of sensor-based control data that indi-
cated the driving characteristics of the test vehicle. 
Estimation accuracy for the B-torque was 11.9%. For the 
other seven types, the estimation accuracy was below 3%.

6-2 Detection performance
The proposed system was evaluated as to its spoofing 

message detection performance along with two types of 
conventional systems. Of these two types, one monitored 
message reception intervals, while the other monitored 
time-series variation of the monitored control data. The 
latter conventional system used the previously received 
normal data to estimate the current value of the monitored 
control data and if the difference between the current value 
and the estimate exceeded the allowable range, determined 
the received message to be a spoofing message.

The evaluation indices used were sensitivity and true 
negative rate*3 expressed by Eqs. 1 and 2, respectively. The 
sensitivity value of 1 indicates that every inserted spoofing 
message was detected. The true negative rate of 1 implies 
that the system recognized every normal message correctly 
and made no error detecting it as a spoofing message. True 
positive and false positive in these equations represent the 
number of correctly identified spoofing messages and the 
number of erroneously identified spoofing messages, 
respectively. Likewise, true negative and false negative 
represent the number of correctly identified normal 
messages and the number of erroneously identified normal 
messages, respectively.

                                                            .................  Eq. 1

                                                                          ...  Eq. 2

The test used the attack model illustrated in Fig. 6. 
While vehicle speed data (approx. 60 km/h) was sent 
repeatedly, the attacker ECU sent spoofing messages 
repeatedly by two attack methods to tamper with the 
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vehicle speed to 81 km/h. One attack method was a straight 
attack. The tampered speed of 81 km/h was repeatedly sent, 
as shown in Fig. 7 (a). The other attack method was a jab 
attack. The attacker ECU sent tampered data 14 times, each 
time raising the speed gradually from the normal data of 60 
km/h to the target tampered speed of 81 km/h at 1.5 km/h 
intervals, followed by repeated transmission of tampered 
data of 81 km/h. Figure 8 represents all the speed data used 
for the jab attack, with the samples thinned for visibility. 
Figure 8 (A) indicates the duration in which the jab attack 
took place. The early part of this duration is enlarged in 
Fig. 7 (b). All the speed data subjected to the straight attack 
was similar to the jab attack except for the tampered data 
used at the beginning of the attack.

Figure 9 gives the evaluation results. The conven-
tional system monitoring the message reception cycles 

exhibited a sensitivity value of 1 for both the straight and 
jab attacks. However, its true negative rate was low at 0.7. 
When receiving normal and spoofing messages within the 
allowable range of message reception intervals, this 
conventional system failed to distinguish between these 
messages and determined both normal and spoofing 
messages to be spoofing messages. In the test, the true 
negative rate of this conventional system was low in the 
duration indicated by Fig. 8 (A) in which normal messages 
were received among spoofing messages.

When subjected to straight attacks, the conventional 
system that monitored the time-series variation of the 
monitored control data exhibited a sensitivity and true 
negative rate of 1. However, its detection performance was 
substantially low against jab attacks, with its sensitivity 
and true negative rate decreasing to 0 and 0.5, respectively. 
When the jab attack commenced, which tampered with the 
normal data repeatedly and raised the speed gradually from 
approximately 60 km/h to the target tampered speed of 81 
km/h at 1.5 km/h intervals, estimation of the current speed 
based on the speed data previously determined to be 
normal resulted in a difference between the estimate and 
the tampered data falling in the allowable range. Therefore, 
received spoofing messages were all erroneously deter-
mined to be normal. Moreover, once the tampered speed 
data reached 81 km/h, estimation of the current speed 
based on the tampered data previously determined to be 
normal resulted in a difference between the estimate and 
the normal data of approximately 60 km/h, exceeding the 
allowable range. Consequently, all normal messages were 
erroneously determined to be spoofing messages. These are 
the causes of the low detection performance.

The proposed system exhibited higher detection 
performance than the conventional systems in both types of 
attacks. Subjected to straight attacks, its sensitivity and true 
negative rate were both 1. Against jab attacks, the proposed 
system exhibited a sensitivity and true negative rate of 
0.99. The miniscule erroneous determination under jab 
attacks occurred once, immediately after the commence-
ment of the attack. The reason for this was that the value of 
the tampered data inserted as a spoofing message was 
below the difference estimated by the vehicle data model. 
Nonetheless, the value of tampered data inserted as a 
spoofing message increased gradually at 1.5 km/h intervals 
up to 81 km/h. In the test, the tampered data of the second 
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and following spoofing messages exceeded the difference 
estimated by the vehicle data model. Consequently, these 
were all detected as spoofing messages. The proposed 
system monitors the target control data indirectly, based on 
groups of correlated control data via a vehicle data model. 
Therefore, in the test, it proved itself to be capable of 
detecting even jab attacks as well as straight attacks.

7. Conclusion

An anomaly-based IDS CDEC for in-vehicle networks 
was proposed. The proposed system monitors sensor-based 
control data by comparison of estimates produced via a 
vehicle data model based on groups of correlated control data.

In a test, the proposed system was applied to eight 
types of sensor-based control data that represented the  
vehicle’s driving characteristics. It proved itself to be capable 
of learning traffic data in every aspect for the vehicle data 
model. Accuracy estimates of the vehicle data model were 
below 3% for seven types of data. Furthermore, the proposed 
system was compared with two types of conventional systems 
as to their capability of detecting spoofing messages. The 
results showed that the detection performance of the proposed 
system was the highest and the proposed system detected 
inserted spoofing messages, distinguishing them from normal 
messages.

Using the proposed system, it is possible to identify 
spoofing messages inserted in an in-vehicle network by a 
cyber attacker. Consequently, the proposed system facili-
tates identification of the attacked subject, thereby reducing 
the time taken before implementing concrete countermea-
sures and delimiting the scope of the countermeasures. 
Using the proposed system and the conventional systems 
used in the comparison, the IDS being developed by 
Sumitomo Electric configures three monitoring levels for 
in-vehicle networks to detect unknown cyberattacks on 
long-product-life vehicles in an on-board environment.

Technical Terms
＊1  Correlation analysis: The correlation between two 

variables (x, y) is determined by the formula of Pearson’s 
product-moment correlation coefficient expressed by  
Eq. 3. In this equation, γ is a cross-correlation coefficient, 
x is the value of monitored control data, y is the value of 
other control data; μx and μy are mean values of the 
monitored control data and the other data, respectively, 
and n is the sample size. The cross-correlation coefficient 
varies within a range between 0 and ±1.0. The correlation 
between two variables is stronger when their values are 
closer to 1.0 or −1.0. There is a cross-correlation between 
two variables when the values are either 0.4 or greater or 
−0.4 or smaller.

                                               ..............................  Eq. 3

＊2  Regression model: A relational expression between a 
target variable and explanatory variable calculated by 
a statistical method. In this report, the monitored 
control data is the target variable and other control 
data correlated with the monitored control data is the 
explanatory variable.

＊3  True negative rate: An evaluation index for detection 
performance. The true negative rate indicates how 
much normal messages have been correctly identified. 
The ideal value for the true negative rate is 1.

References
(1)  Miller, C., and Valasek, C., “Remote Exploitation of an Unaltered 

Passenger Vehicle,” presented at DEF CON 23, August 2015.
(2)  International Organization for Standardization, “Road vehicles- 

Controller area network (CAN) - Part 1: Data link layer and physical 
signaling,” ISO11898-1, Rev. 2003.

(3)  International Organization for Standardization, “Road vehicles- 
Controller area network (CAN) - Part 1: Data link layer and physical 
signaling,” ISO11898-1, Rev. 2015.

(4)  Koscher, K., Czeskis, A., Roesner, F., Patel, S. et al., “Experimental 
Security Analysis of a Modern Automobile,” 2010 IEEE Symposium 
on Security and Privacy, 2010.

(5)  Hamada, Y., Inoue, M, Ueda, H., Miyashita, Y, et. al., “Anomaly-Based 
Intrusion Detection Using the Density Estimation of Reception Cycle 
Periods for In-Vehicle Networks,” SAE International Journal of 
Transportation Cybersecurity and Privacy, Vol1, 2018.

(6)  Müter, M., and Asaj, N., “Entropy-Based Anomaly Detection for 
In-Vehicle Networks,” 2011 IEEE Intelligent Vehicle Symposium (IV), 
2011.

(7)  Hamada, Y., Inoue, M., Tateishi, H., Adachi, N., et. al., “Virtual Sensing 
Anomaly Detection for In-Vehicle Network,” 2018 Symposium on 
Cryptography and Information Security, January, 2018.

(8)  Tibshirani, R., “Regression shrinkage and selection via the lasso,” 
Journal of the Royal Statistical Society. Series B (Methodological), pp. 
267–288, 1996.

(9)  Breiman, L., Friedman, J., Stone, C.J., and Olshen, R.A., “Classification 
and Regression Trees,” Boca Raton: Chapman and Hall/CRC, 
Monterey, CA, 1984.



SEI TECHNICAL REVIEW  ·  NUMBER 88  ·  APRIL  2019  ·  81

Contributors  The lead author is indicated by an asterisk (*).

Y. HAMADA*
•   Assistant General Manager, Cyber-security R&D 

Office

M. INOUE
•   Assistant Senior Manager, AutoNetworks 

Technologies, Ltd.

N. ADACHI
•   AutoNetworks Technologies, Ltd.

H. UEDA
•   Manager, AutoNetworks Technologies, Ltd.

Y. MIYASHITA
•   Senior Manager, AutoNetworks Technologies, Ltd.

Y. HATA
•   General Manager, Cyber-security R&D Office


