



Senior Manager & Sales Engineer, Energy Storage Systems

Sumitomo Electric USA





# Marc Newmarker

Principal Engineer - Advanced Clean Technology

San Diego Gas & Electric



\$16.7B

2023 revenue



~40M

Consumers

**20 YRS** 

Outperforming peers on comparative total returns

\$87B

In total assets (2023)



Together, we are making a bigger impact



One of the largest regulated utility customer base in the U.S.



100+

Years of history in the energy industry

### **Building North America's premier energy infrastructure company**





#### San Diego Gas & Electric

**Providing Clean, Safe, Reliable Energy** 

#### More than an energy company, we're a people company

San Diego Gas & Electric is an innovative energy company that provides clean, safe, and reliable energy to better the lives of the people we serve in San Diego and southern Orange counties.



#### 3.7 MILLION CONSUMERS

We distribute energy service to 3.6 million people through 1.49 million electric meters and 905,000 natural gas meters in San Diego and southern Orange counties.

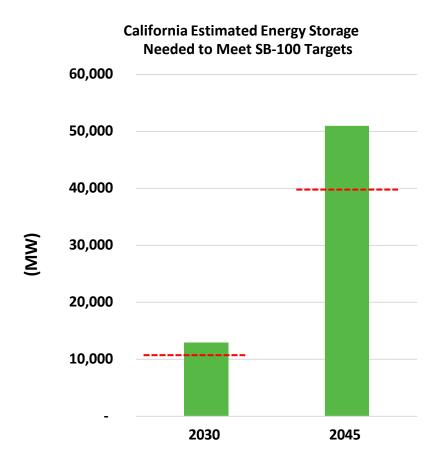


#### 4,600+ EMPLOYEES

We employ more than 4,600 people who work every day to deliver the energy our customers need.



#### 4,100 SQUARE-MILE SERVICE AREA


We supply power to a population of 1.4 million business and residential accounts in a 4,100 square-mile service area spanning 2 counties and 25 communities.





#### **Significant Energy Storage Needed to Meet California Climate Goals**

- Sizable generation retirements expected across the west will require significant energy storage over next 10-20 years to meet the state's climate goals
- Statewide, expected average annual growth ~8GW of solar, and ~2GW of battery storage, beginning in 2023 to support electrification¹
- SDG&E's projected <u>regional</u> electricity consumption expected to double from 2020 to 2045, primarily driven by transportation electrification<sup>1</sup>
- SDG&E's projected <u>regional</u> electric net peak demand grows by 85% from 2020 to 2045<sup>1</sup>





--- SDG&E Path to Net Zero Study Storage Estimates

Note: Includes 38 MMT case from IRP and CEC SB100 Core scenario. CARB Scoping Plan being updated, as are CPUC IRPs.

1. SDG&E Path to Net Zero Study Estimates



### **SDG&E Existing Utility Owned Storage**

In Operation | Under Construction

| Project/Location                                   | MW / MWh             | COD       |  |  |
|----------------------------------------------------|----------------------|-----------|--|--|
| In-Service Energy Storage Projects (~443.1 MW)     |                      |           |  |  |
| Borrego, Canyon Crest, Ortega Hwy, Bor<br>Springs  | 5.6 MW / 11 MWh      | 2012-2015 |  |  |
| Escondido                                          | 30 MW / 120 MWh      | 2017      |  |  |
| El Cajon                                           | 7.5 MW / 30 MWh      | 2017      |  |  |
| Miguel VRF                                         | 2 MW / 8 MWh         | 2017      |  |  |
| Miramar Top Gun                                    | 30 MW / 120 MWh      | 2021      |  |  |
| Kearny                                             | 20 MW / 80 MWh       | 2022      |  |  |
| Ramona Air Attack Base                             | 0.5 MW / 2 MWh       | 2022      |  |  |
| Fallbrook                                          | 40 MW / 160 MWh      | 2023      |  |  |
| Westside Canal                                     | 231 MW / 924 MWh     | 2023      |  |  |
| Melrose                                            | 20 MW / 80 MWh       | 2023      |  |  |
| Pala-Gomez Creek                                   | 10 MW / 60 MWh       | 2023      |  |  |
| Boulevard, Clairemont, Paradise, Ellic             | ot 39 MW / 180.5 MWh | 2023      |  |  |
| Borrego Microgrid Expansion                        | 7 MW / 17 MWh        | 2025      |  |  |
| Cameron Corners 0.5 MW / 4 MWh                     |                      | 2025*     |  |  |
| Under Construction Energy Storage Projects (40 MW) |                      |           |  |  |
| Fallbrook 2.0                                      | 30 MW / 120 MWh      | 2024      |  |  |
| Santee                                             | 10 MW / 40 MWh       | 2024      |  |  |
| Total                                              | ~483.1 MW            |           |  |  |





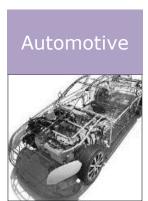
#### **Sumitomo Electric Introduction**

#### Parent Company:

#### **Sumitomo Electric Industries, Ltd.**

- Founded in 1897
- Headquartered in Osaka, Japan
- Employees worldwide: 290,000
- Net Sales: \$29B




#### **US Subsidiary:**

#### **Sumitomo Electric U.S.A (SEUSA)**

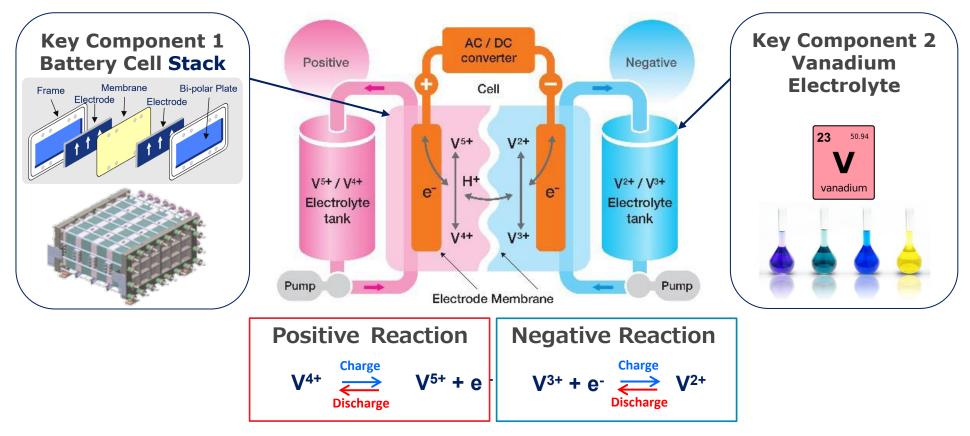

- Established in 1971
- Headquartered in Torrance, CA
- US based employees: 58
- Net Sales: \$42M












Conversion rate: 151.41 JPY to USD. Figures are as of the fiscal year that ended March 31, 2024.



-23-

### Sumitomo Electric's Vanadium Redox Flow Battery Technology



- ✓ Vanadium electrolytes in positive and negative are always circulating by pumps in order to make redox reaction in cell stack.
- ✓ Flow battery can be charged and discharged through this redox reaction.
- ✓ The redox reaction do NOT deteriorate the electrolyte, so the electrolyte can be used semi-permanently.



#### **Sumitomo Electric: Installation Record Worldwide**

**John Cockerille Nippon PS** Kashiwazaki IR Energy **Hokkaido Electric Power (HEP)** HEP 1.7MWh *C&I* 750kWh *C&I* **8MWh Wholesale Market** 51MWh Grid Balancing (wind) 60MWh Dispatch SUMITOMO ELECTRIC 52 190 MW MWh **Connect with Innovation ITRI National Lab. Energy Queensland SDGE** San Diego Gas & Electric **Taiwan Power** 3MWh 4MWh 750kWh 750kWh 750kWh (SDGE) **Electrolyte Electrolyte** Wholesale Market, **VPP** Multiuse 8MWh

**Production** 



**Production** 

-25- SUMITOMO ELECTRIC GROUP

Wholesale Market

**Microgrid** 

### **Miguel Substation Project Outline**

Multi-use operation of VRFB system on the distribution grid of SDG&E to prove economic value & potential for the use on electric grids.

✓ Capacity:

8MWh (2MWx4h, Max 3MW)

✓ Location:

SDG&E, Miguel S/S (CA, USA)

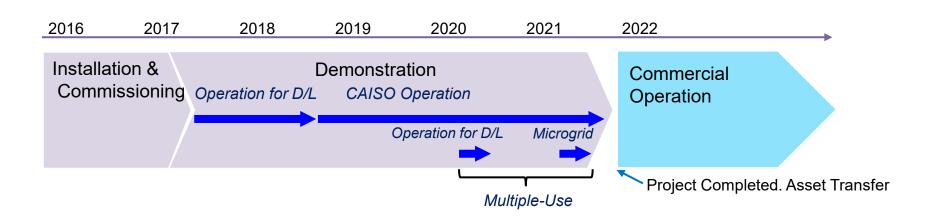
- ✓ Use Cases:
  - Distribution line applications such as peak-shaving, peak-cut
  - Operation in CAISO market
  - Microgrid
- ✓ Project Partners:
















#### **Demonstration Period**

| Step | Item                    | Contents, Target                                                                                                                                                      |
|------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Distribution            | <ul> <li>✓ Confirm basic control function in distribution line</li> <li>✓ Peak Shaving, Peak Shift, Capacity Firming,</li> <li>Voltage Control, and so on.</li> </ul> |
| 2    | CAISO Market            | <ul> <li>✓ Energy Market, Ancillary Service</li> <li>✓ Bidding algorithm study for revenue improvement</li> </ul>                                                     |
| 3    | Multi-use,<br>Microgrid | <ul> <li>✓ Multi-use for distribution and CAISO operation</li> <li>✓ Multi-use for CAISO operation in normal and microgrid operation in emergencies</li> </ul>        |





-27-

### **Beyond Pilots**

99% Operational Availability over final 2-yrs of demonstration period



#### California Flow Battery System

Capacity 8MWh (2MW x 4h)

*Operator* San Diego Gas and Electric

Application CAISO Market, Peak Shaving, Microgrid

Demonstration 2017 – 2022

LTSA 20-yrs

Support NEDO, California Go-Biz







2022

#### California LDES Flow Battery System

Capacity 4MWh (0.5MW x 8h)

CustomerSan Diego Gas and ElectricApplicationCAISO Market, Microgrid

*Operation* 2025∼ *LTSA* 20-yrs







### **SDG&E Cameron Corners**

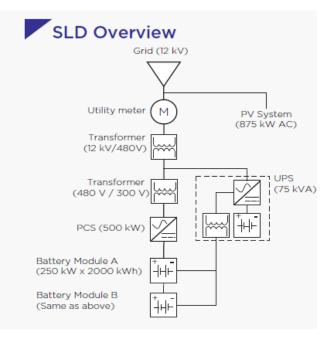




### **Long Duration Energy Storage for Community Microgrid**

This facility is designed to establish a community microgrid in conjunction with the adjacent photovoltaic generation system, ensuring energy supply during Public Safety Power Shutoff (PSPS) events (intended to provide coverage up to three days) as a part of SDG&E's wildfire mitigation program. Under normal condition, the system operates in the CAISO market.

The system consists of two 250 kW battery modules (totaling 0.5 MW and 4 MWh with eight-hour duration), which are connected in series on the DC side to the PCS.




#### Project Overview

- Capacity: 4 MWh (0.5 MW × 8 h)
- Rated Power: 0.5 MW
- Location: Cameron Corners, California, US
- Operation Start: 2025 (Commercial Operation)
- Use Cases: CAISO operation, Community microgrid with black start capability
- Grid Connection: 12 kV
- Battery Footprint: 38.7 × 42.3 ft² (11.8 × 12.9 m²)
- Elevation: Above 2,500 ft (approx. 800 m)

#### **Battery Specification**

- DC Voltage Range; 480 780 V
- Battery Enclosure: 20 ft Container (LQ: Low Cube)
- Tank Type: 40 ft Container (HQ: High Cube)
- HVAC: Forced Air
- Aux. Power Supply: 208 VAC
- Certification: UL 9540A, UL 1973

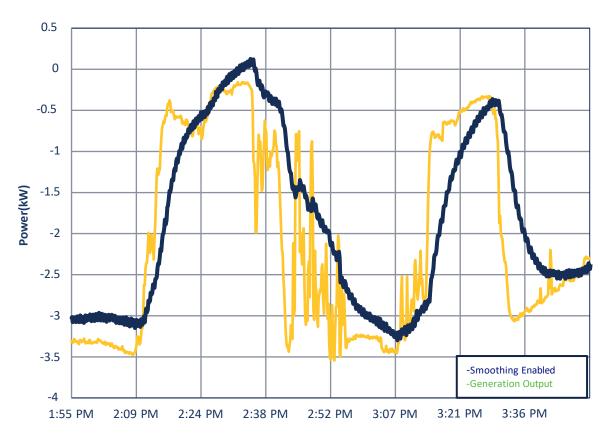




-30- SUMITOMO ELECTRIC GROUP

# **Moderator Led Q&A**




# **Moderator Q&A**

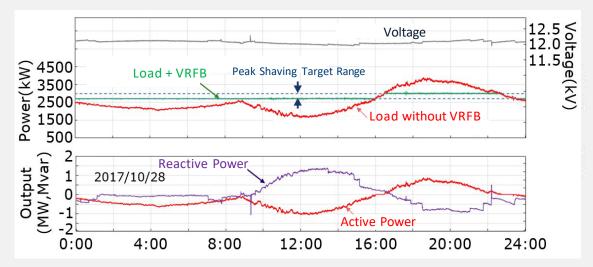
- Can you describe the results of the various use cases tested at the Miguel project?
  - Ideally providing specific examples

# **Capacity Firming/PV Smoothing Operation**

Smoothing intermittencies caused by fluctuating power output

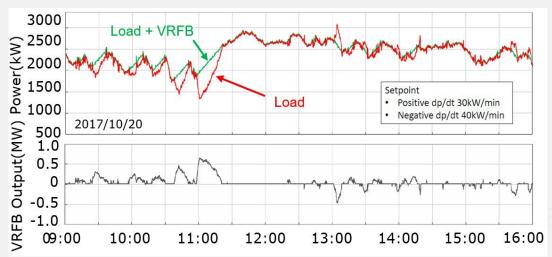







# **Capacity Firming/PV Smoothing Operation**



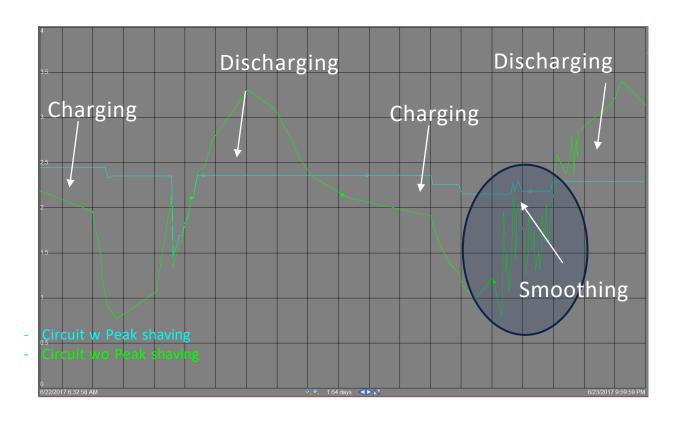

#### **Distribution Network**

Peak shaving / Base loading
Reduce infrastructure investment and O&M costs.



#### Renewable Firming

Fluctuations in renewables can be suppressed.





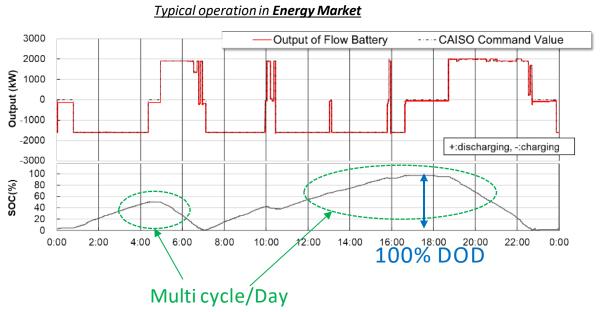

# **Capacity Firming/PV Smoothing Operation**



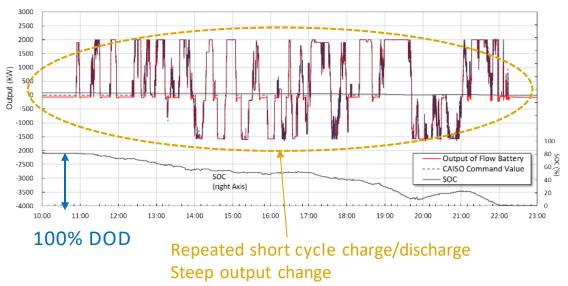
- Data of June 22nd 23rd 2017
- Peak Shaving & Base
   Loading (flatten the load curve of feeder and reduce loading at substation)
- Smoothing with high-speed communications






### **Market Participation**




- Dec.2018 CAISO operation started with Energy market only

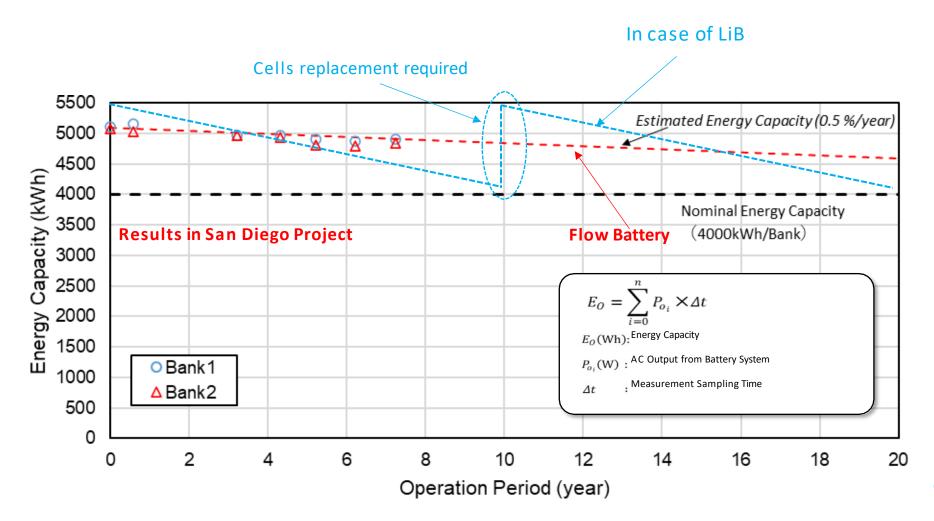
- Jun. 2019 Operation in both Energy and AS market was started

Aug.2021 CAISO operation study is completed



#### Typical operation in Ancillary Service






<sup>\*</sup>Due to confidentiality, Market Revenue cannot be displayed

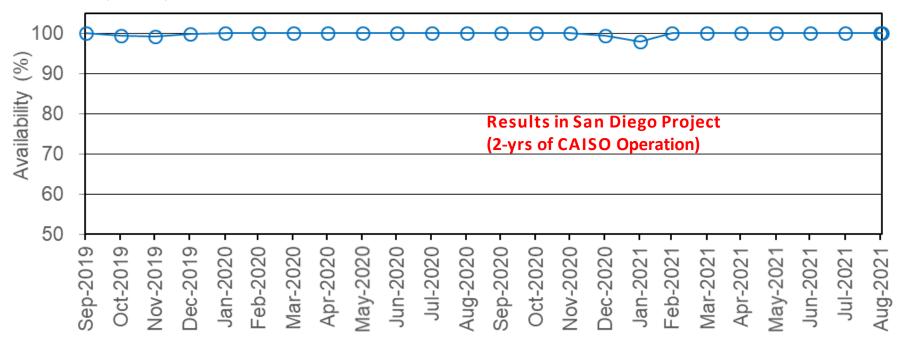
# **Moderator Q&A**

- Can you speak to overall performance, degradation, or other key indicators?

### **Minimal Observed Degradation Miguel Substation**

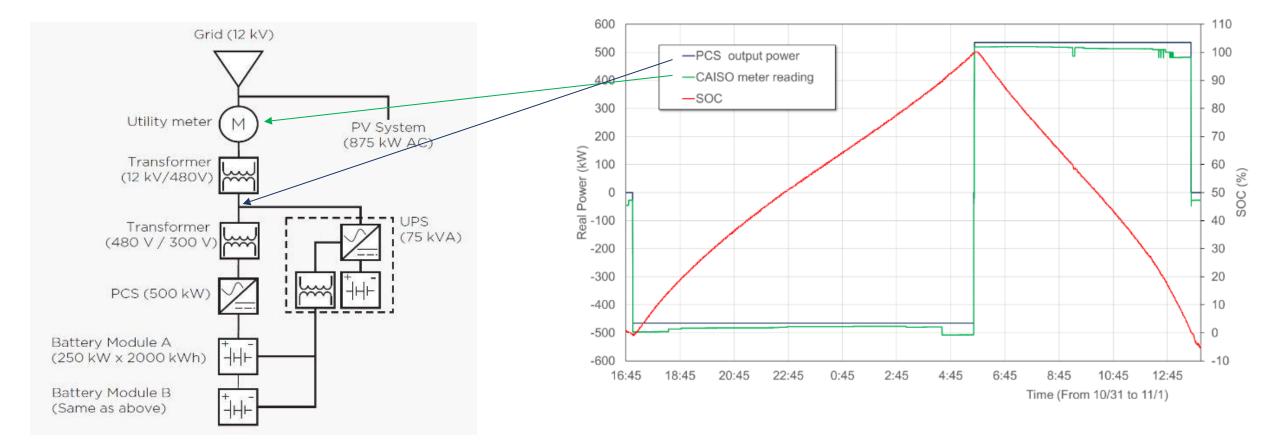








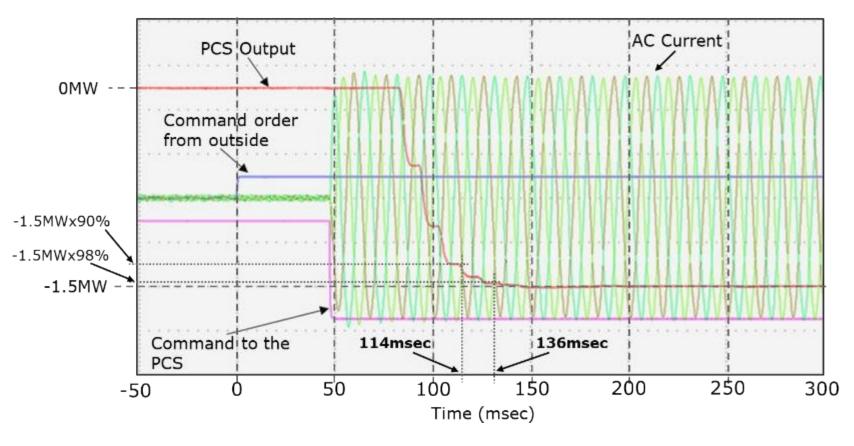

- ✓ The system kept high availability during CAISO operation.
   ( 99% over 2 year period)
- ✓ The data includes unexpected stoppage by PCS and Battery components.


#### Availability = B/(A-D)

| A Total Time Frame (Jun.2019~Aug.2021)      | 19368 hour |  |
|---------------------------------------------|------------|--|
| B CAISO Operation                           | 15883 hour |  |
| C Unscheduled Down Time Due to Battery      | 166 hour   |  |
| D Others (Scheduled Down Time, Unscheduled  | 2220 hour  |  |
| Down Time due to other than battery system) | 3320 hour  |  |



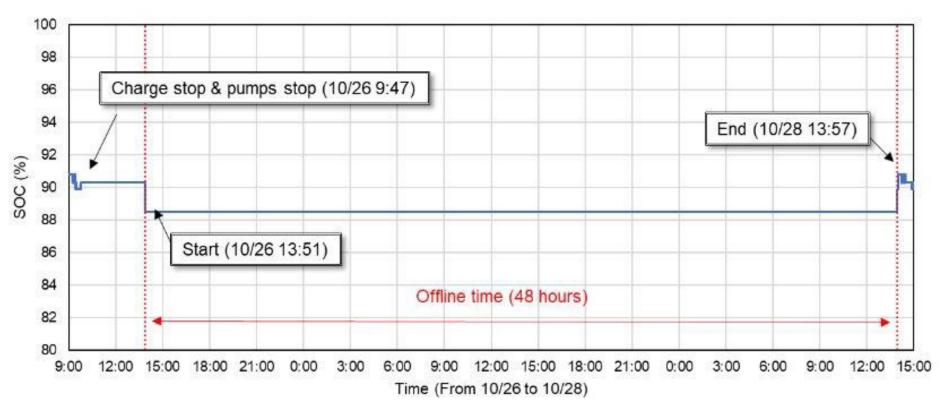



## Charging/Discharging Test Cameron Corners Microgrid



# Response Time Miguel Substation



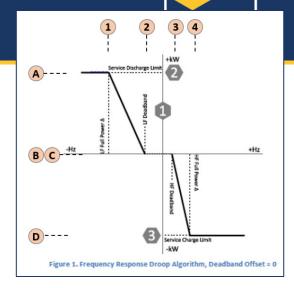

- ✓ Response time depends on latency and PCS response.
- ✓ Response time tested during commissioning was less than 200msec.
- ✓ Battery itself can respond in less than 0.1msec.

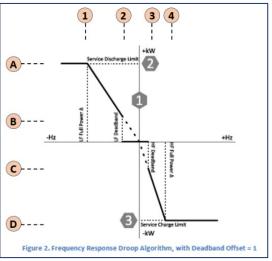




# No SoC Decrease During System Downtime Cameron Corners Microgrid






# **CAISO** Resource Adequacy Requirements

- CAISO Tariff Appendix K Ancillary Service Requirement Protocol (ASRP)
- CAISO monitors
  - actual real power level (MW);
  - high limit, low limit and rate limit values
  - in-service status indication confirming availability of Regulation service.
  - Resource Ramp Rate when operating as Generation (MW/min);
  - Resource Ramp Rate when operating as Load (MW/min);
  - The maximum instantaneous ability to produce or consume Energy in MW;
  - The maximum capability to provide Energy as expressed in MWh over a fifteen (15) minute interval

- Requirements for Certification
  - the rated capacity of 500 KW or greater
  - Minimum Governor Performance
    - 5 percent droop;
    - +/- 0.036 Hz deadband;
    - Power output changes in one second for any freq deviation outside of the deadband;
  - Minimum Frequency Responsive Device Performance
    - frequency < 59.92 Hz, the resource must reach ten (10) percent of its awarded spinning capacity within eight (8) seconds;
    - The resources must change the power it delivers or consumes in one (1) second if system frequency is less than or equal to 59.92 Hz
  - Respond to dispatch within one (1) minute
  - Full power charge or discharge within ten (10) minutes







# **Moderator Q&A**

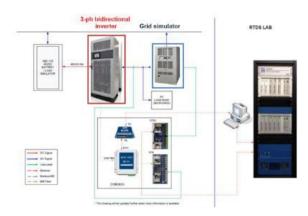
- You mentioned this system was also intended to demonstrate microgrid operation, can you expand on that a bit more and show any relevant data
- Microgrid aspect added to the project in 2021

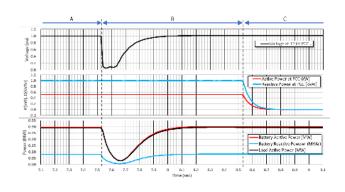
# Microgrid Boundary

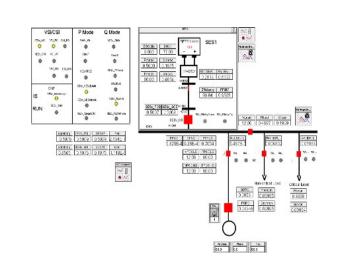


✓ The microgrid included 66 customers over 1.5 miles of distribution



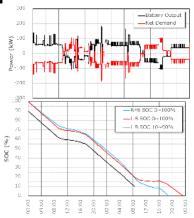




## Dynamic Testing




#### **Selection of Microgrid Area**

- Simulation using actual distribution network constants and load data by grid simulator (RTDS)
- Control parameter setting by transient response simulation of black start and seamless transition









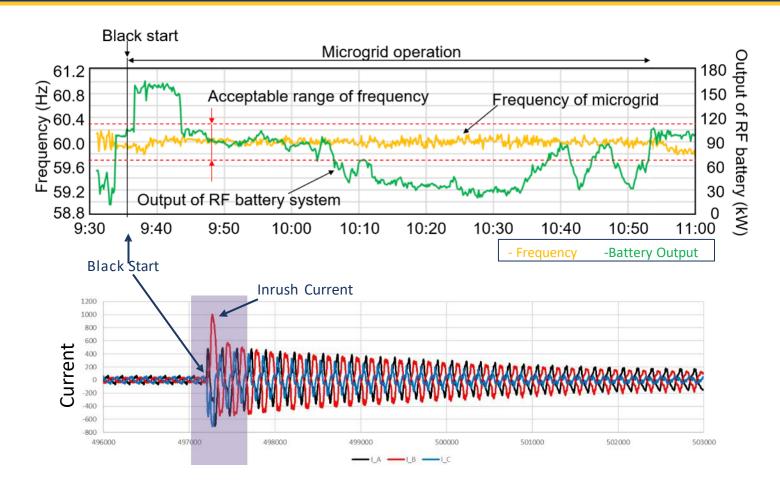
#### **Duration Consideration**

- Simulation of flow battery modeling
- Calculations of duration using actual load data for selected microgrid areas



#### **Voltage Source Parallel Operation**

Apply the following algorithm to PCS \_- Simulated Inertia, - Generator Model




Two PCSs (Bank#1, #2) operate independently of voltage source

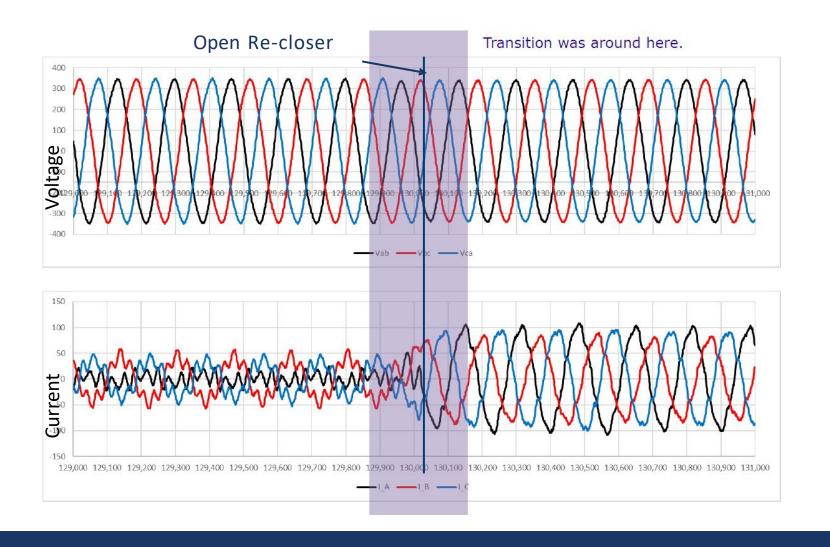


## Microgrid Black Start





Black start procedure


- Measurement point battery site
- Inrush
- IEEE 1547
  - Delay reconnection after steady-state voltage and frequency





### **Seamless Transition**





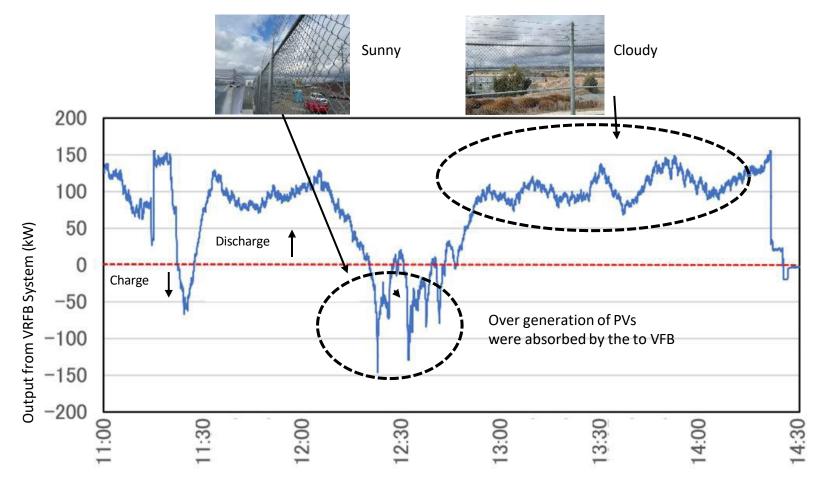
- Successful transition to microgrid without service interruptions
- (No voltage or frequency excursions outside of IEEE 1547 guidelines

#### **Seamless Transition**

- Battery voltage rms = 240vvoltage peak = 339v
- Voltage remains steady
- Current increases to pickup load



# Microgrid Operations Low and High PV Penetrations




Advantages of a Battery as Island Master

✓ Surplus power cannot be absorbed when generators are used as voltage source



✓ In a microgrid with storage batteries as the voltage source, Solar energy can be used effectively without the need for output limitation even in the event of PV over generation







# Thank you!



### **Daniel Petcovic**

Senior Manager & Sales Engineer, Energy Storage Systems

Sumitomo Electric USA