Redox Flow Battery - Long Duration Energy Storage (LDES) -

SEIU 201

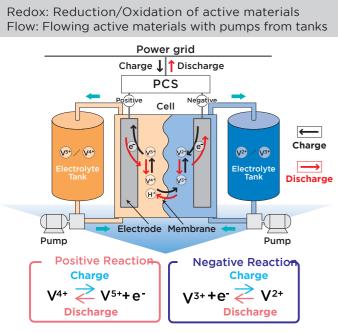
SUMITOMO ELECTRIC Connect with Innovation

Redox Flow Battery System Division

https://sumitomoelectric.com/products/redox

2025.03

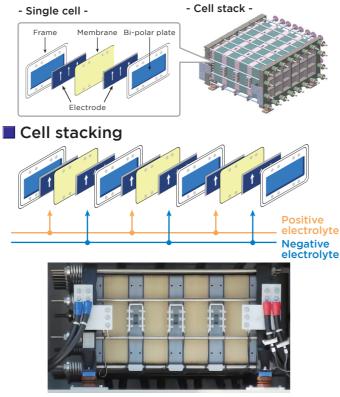
A REAL TRANSPORT



SUMITOMO ELECTRIC GROUP

Principle and features of Rrdox Flow Battery System

Container Type Redox Flow Battery


Principle

- The reactions are associated with only the changes in valences of the vanadium ions.
- Because the valence changes do not deteriorate the electrolyte, electrolyte can be used semi-permanently.

Configuration

cell stack

Features

Long Lifetime

- >20-year design life
- Unlimited charging / discharging cycle
- Significantly low degradation of capacity
- Reusable electrolyte after decommissioning

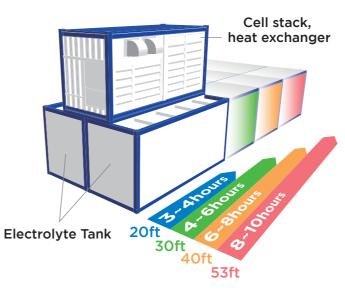
Fire Safety

- Non-flammable electrolyte
- No thermal runaway
- Since no hazardous materials are used, administrative permission at the time of installation is easy

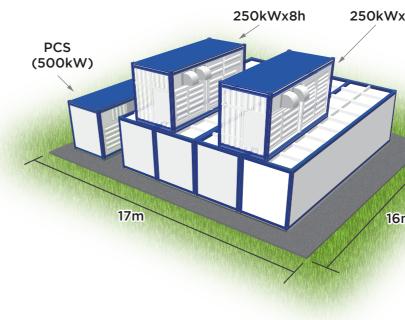
Easy Operation / Operability

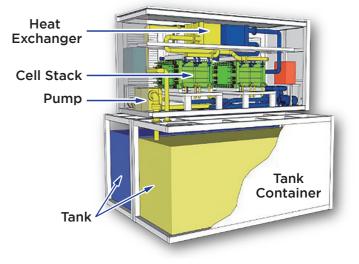
- Available State of Charge (SoC): 0 100%
- No unbalanced capacity across the cell stacks
- Accurate & real-time SoC monitoring

Low Life-Cycle Cost


- Low CAPEX per kWh: Lower unit cost (\$/kWh) for longer duration systems
- Low OPEX: No need for replacement of cell stacks or electrolyte
- Significant salvage value: Reusable electrolyte of long duration systems

Footprint Reduction


Minimized installation with the two-storey model: the top is battery container and the bottom two are electrolyte tank containers.


Design Flexibility

- Separation of power (MW) and energy (MWh)
- Easy to build long duration energy storage (LDES)

Example of layout for 500kWx8h (4,000kWh) system

Battery Container

Type (hours)	Output	Capacity
20ft (3~4h)	250kW	750kWh~1,000kWh
30ft (4~6h)	250kW	1,000kWh~1,500kWh
40ft (6~8h)	250kW	1,500kWh~2,000kWh
53ft (8~10h)	250kW	2,000kWh~2,500kWh

Capacity (duration) is expandable for more than 10h.

Sample footprint

8h	Output	Capacity	LxW
	1MW	4MWh	15m×17m
	1MW	6MWh	21m×17m
17	1MW	8MWh	27m×17m
	10MW	40MWh	85m×27m
n	10MW	60MWh	103m×27m
	10MW	80MWh	131m×27m

Grid-scale Project for Utility in Japan

Grid-scale Project for Utility in US

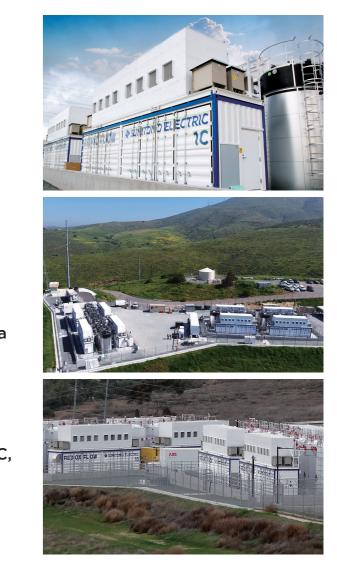
Hokkaido Electric Power Network Project

- Customer: Hokkaido Electric Power Network, Inc.
- Location: Minami-Hayakita Substation Hokkaido, Japan
- Power and Energy: 17MWx3h (51MWh)
- Application: Enhancing grid control for new 162MW wind turbines (e.g. Frequency regulation, Renewable generation smoothing)
- Operation term: 21 years
- Commencement of Operation: Apr. 2022

Large Scale Flow Battery Demonstration for Grid Control with Hokkaido Electric Power Network

- Customer: Hokkaido Electric Power Network. Inc.
- Location: Minami-Hayakita Substation Hokkaido, Japan
- Power and Energy: 15MWx4h (60MWh)
- Objective: Urgent demonstration project of a large scale power storage system, subsidized by Ministry of Economy, Trade and Industry
- Application: Frequency regulation, Renewable generation smoothing
- Demonstration Term: 2013 to 2018
- Commencement of Operation: Dec. 2015 (Commercially operational since 2019)

Floor 1: Tank, Pump and PCS


Floor 2: Cell stack and heat exchanger

Flow Battery Pilot Project for Grid Applications in California (NEDO project)

- Customer: San Diego Gas & Electric (SDG&E)
- Location: San Diego, California, US
- Power and Energy: 2MWx4h (8MWh)
- Application: Microgrid, Peak shaving, Renewable firming
- Term: 2015 to 2021 (Under operation after demonstration)
- Commencement of Operation: Mar. 2017 (Commercially operational since 2022)
- First Flow Battery in the US with UL certified Cell Stack (UL1973)
- First Flow Battery operational in the California Independent System Operator (CAISO) markets since 2018
- Market participation in both Energy and Ancillary Services (AS)
- Operation with features of 0-100% Usable SoC, Unlimited Cycle Life
- First Flow Battery engaged in a microgrid operation on actual power distribution line independent of external grids in 2021

Utility Company in US Project

- Customer: Utility Company in US
- Location: California, USA
- Power and Energy: 500kWx8h (4MWh)
- Application: Microgrid, Peak shaving, Renewable firming
- Commencement of Operation: Sep. 2024

Project in Africa & Europe & Asia

Project in Japan

UNIDO Morocco Project

- Customer: UNIDO / MASEN
- Location: Ouarzazate, Morocco
- Power and Energy: 125kWx4h (500kWh)
- Application: Microgrid, Renewable generation smoothing
- Operation under tough environmental conditions
- Commencement of Operation: Jul. 2019

John Cockerill Project

- Customer: John Cockerill
- Location: Seraing, Belgium
- Power and Energy: 500kWx3.4h (1,700kWh)
- Application: Microgrid, Peak shaving, Peak cut operation, Demand response
- Commencement of Operation: Oct. 2018

Taiwan Power Research Institute Project

- Customer: Taiwan Power Research Institute
- Location: Taipei, Taiwan
- Power and Energy: 125kWx6h (750kWh)
- Application: Microgrid, Peak cut operation, Energy management, Demand response
- Commencement of Operation: Feb. 2017

POSITIVE TAN

Kashiwazaki City Project

- Customer: Kashiwazaki Ideal & Realistic Energy, Inc.
- Location: Kashiwazaki, Nigata, Japan
- Power and Energy: 1,000kWx8h (8,000kWh)
- Application: Carbon emissions reduction by effective renewable energy utilization.
- Commencement of Operation: Sep. 2024

NIPPON P.S Project

- Customer: Obayashi Corporation
- Location: Tokyo, Japan
- Power and Energy: 500kWx6h (3,000kWh)
- Application: Peak reduction, Excess renewable power management
- Commencement of Operation: Jan. 2015

Obayashi Corporation Project

- Customer: Obayashi Corporation
- Location: Tokyo, Japan
- Power and Energy: 500kWx6h (3,000kWh)
- Application: Peak reduction, Excess renewable power management
- Commencement of Operation: Jan. 2015

