

Reduced Diameter Bend Insensitive Single-Mode Optical Fibers

PureAccess™ series **PureBand**

Cost saving

Space saving **Energy saving**

Smaller foot print cable gives more advantages for cost and energy saving

Document #: TR-21237C Issued #: Jan. 11th, 2024

G.652.D/G.657.A1

PureBand™-PLUS 200µm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureBand™-Plus" in 200 µm coating diameter for a reduced cable diameter design. "PureBand™-Plus" is made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A1 and ITU-T G.652.B and D. A dual layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports access networks including last one-mile applications such as FTTH, due to its excellent bending performance while maintaining compatibility with conventional SMF.

Fiber Optical Specifications

<u>Attenuation</u>

 $\begin{array}{lll} \text{Attenuation at } 1310 \text{ nm} & \leq 0.35 \text{ dB/km} \\ \text{Attenuation at } 1383 \text{ nm*} & \leq 0.35 \text{ dB/km} \\ \text{Attenuation at } 1550 \text{ nm} & \leq 0.20 \text{ dB/km} \\ \text{Attenuation at } 1625 \text{ nm} & \leq 0.23 \text{ dB/km} \\ \end{array}$

Point Discontinuity (PD)

Point discontinuity at 1310/1550 nm ≤ 0.05 dB

Bending Induced Attenuation

Mandrel Radius	Number of Turns	Wavelength	Attenuation
10 mm	1	1550 nm	≤ 0.75 dB
10 mm	1	1625 nm	\leq 1.5 dB
15 mm	10	1550 nm	\leq 0.25 dB
15 mm	10	1625 nm	\leq 1.0 dB

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $8.9 \pm 0.4 \,\mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nmZero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm $\leq 18 \text{ ps/nm/km}$

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.06 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error $\leq 0.5~\mu m$ Cladding diameter 125.0 \pm 0.7 μm Cladding non-circularity $\leq 0.7\%$ Fiber curl radius $\geq 4.0~m$

Coating Geometry

Coating diameter (Uncolored) 193 \pm 7 μ m Coating diameter (Colored) 205 \pm 7 μ m Coating-Cladding concentricity \leq 10 μ m

Mechanical Specifications

Proof Test	
Proof stress level	0.86 GPa (1.2%, 120 kpsi)

Coating Strip Force (F)

F (peak) $1.3 \text{ N} \le \text{F} \le 8.9 \text{ N}$ F (average) $1 \text{ N} \le \text{F} \le 5 \text{ N}$

Dynamic Tensile Strength

Unaged (median; 0.5 m) \geq 3.8 GPa (\geq 550 kpsi) Aged (median; 0.5 m) \geq 3.0 GPa (\geq 440 kpsi)

<u>Fatigue</u>

Fatigue 20 (nominal value)

Environmental Specifications

Environmental Test Conditions Induced Attenuation at 1310, 1550, 1625 nm

Temperature cycling -60° C to $+85^{\circ}$ C ≤ 0.05 dB/km

Temperature Humidity cycling -10°C to $+85^{\circ}\text{C}/98\%\text{RH} \leq 0.05 \text{ dB/km}$

Water immersion $+23^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Dry heat $+85^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Damp heat $+85^{\circ}\text{C/85\%RH} \leq 0.05 \text{ dB/km}$

^{*} After H_2 -aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureBand™-Plus 200µm" specification supports network design requirements for a 0.20 ps/r-km of maximum PMD link design value specified by ITU-T G.652.D and G.657.A1.

Document #: TR-21239C Issued #: Jan. 11th, 2024

G.652.D/G.657.A1

PureBand™-R 200µm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureBand"—R 200 μ m" made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A1 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports access networks, including last one-mile applications such as FTTH, due to its excellent bending performance while maintaining compatibility with conventional SMF.

Fiber Optical Specifications

Attenuation

 $\begin{array}{lll} \mbox{Attenuation at 1310 nm} & \leq 0.35 \mbox{ dB/km} \\ \mbox{Attenuation at 1383 nm*} & \leq 0.35 \mbox{ dB/km} \\ \mbox{Attenuation at 1550 nm} & \leq 0.20 \mbox{ dB/km} \\ \mbox{Attenuation at 1625 nm} & \leq 0.23 \mbox{ dB/km} \\ \end{array}$

Point Discontinuity (PD)

Point discontinuity at $1310/1550 \text{ nm} \leq 0.05 \text{ dB}$

Bending Induced Attenuation

Mandrel	Number	Wavelength	Attenuation
Radius	of Turns		
10 mm	1	1550 nm	\leq 0.75 dB
10 mm	1	1625 nm	\leq 1.5 dB
15 mm	10	1550 nm	\leq 0.25 dB
15 mm	10	1625 nm	\leq 1.0 dB

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $9.2 \pm 0.4 \,\mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nmZero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm $\leq 18 \text{ ps/nm/km}$

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** \leq 0.1 ps/rkm PMD link design value*** \leq 0.04 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error \leq 0.5 μm Cladding diameter 125.0 \pm 0.7 μm Cladding non-circularity \leq 0.7% Fiber curl radius \geq 4.0 m

Coating Geometry

Proof Test

Coating diameter (Uncolored) 193 \pm 7 μ m Coating diameter (Colored) 205 \pm 7 μ m Coating-Cladding concentricity \leq 10 μ m

Mechanical Specifications

Proof stress level	0.86 GPa (1.2%, 120 kpsi)	
Coating Strip Force (F)		
F (peak)	$1.3~N \leq F \leq 8.9~N$	
F (average)	$1~N \leq F \leq 5~N$	
Dynamic Tensile Strength		
Unaged (median; 0.5 m)	≥ 3.8 GPa (≥ 550 kpsi)	
Aged (median; 0.5 m)	\geq 3.0 GPa (\geq 440 kpsi)	
Fatigue		
Fatigue	20 (nominal value)	

Environmental Specifications

Environmental Test	Conditions	Induced Attenuation at 1310, 1550, 1625 nm
Temperature cycling	-60°C to +85°C	$C \le 0.05 \text{ dB/km}$
Temperature Humidity cyc	cling -10°C to +85°	$PC/98$ %RH $\leq 0.05 \text{ dB/km}$
Water immersion	+23°C	≤ 0.05 dB/km
Dry heat	+85°C	≤ 0.05 dB/km
Damp heat	+85°C/85%RH	≤ 0.05 dB/km

^{*} After H_2 -aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureBand™-R 200µm" specification supports network design requirements for a 0.20 ps/rkm of maximum PMD link design value specified by ITU-T G.652.D and G.657.A1.

Document #: TR-21241C Issued #: Jan. 11th, 2024

G.652.D/G.657.A1

PureBand™-R[LL] 200μm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureBand™-R [LL] 200 µm" made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A1 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports access networks, including last one-mile applications such as FTTH, due to its excellent bending performance while maintaining compatibility with conventional SMF.

Fiber Optical Specifications

Attenuation

 $\begin{array}{lll} \text{Attenuation at } 1310 \text{ nm} & \leq 0.32 \text{ dB/km} \\ \text{Attenuation at } 1383 \text{ nm*} & \leq 0.32 \text{ dB/km} \\ \text{Attenuation at } 1550 \text{ nm} & \leq 0.18 \text{ dB/km} \\ \text{Attenuation at } 1625 \text{ nm} & \leq 0.20 \text{ dB/km} \\ \end{array}$

Point Discontinuity (PD)

Point discontinuity at 1310/1550 nm ≤ 0.05 dB

Bending Induced Attenuation

Mandrel	Number	Wavelength	Attenuation
Radius	of Turns		
10 mm	1	1550 nm	≤ 0.75 dB
10 mm	1	1625 nm	\leq 1.5 dB
15 mm	10	1550 nm	\leq 0.25 dB
15 mm	10	1625 nm	\leq 1.0 dB

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $9.2 \pm 0.4 \mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nmZero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm $\leq 18 \text{ ps/nm/km}$

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.04 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error $\leq 0.5 \mu m$ Cladding diameter 125.0 $\pm 0.7 \mu m$ Cladding non-circularity $\leq 0.7\%$ Fiber curl radius $\geq 4.0 m$

Coating Geometry

Coating diameter (Uncolored) 193 \pm 7 μ m Coating diameter (Colored) 205 \pm 7 μ m Coating-Cladding concentricity \leq 10 μ m

Mechanical Specifications

Proof Test	
Proof stress level	0.86 GPa (1.2%, 120 kpsi)
Coating Strip Force (E)	

Coating Strip Force (F)F (peak) $1.3 \text{ N} \le \text{F} \le 8.9 \text{ N}$ F (average) $1 \text{ N} \le \text{F} \le 5 \text{ N}$

Dynamic Tensile Strength

Unaged (median; 0.5 m) \geq 3.8 GPa (\geq 550 kpsi) Aged (median; 0.5 m) \geq 3.0 GPa (\geq 440 kpsi)

Fatique

Fatigue 20 (nominal value)

Environmental Specifications

Environmental Test Conditions Induced Attenuation at 1310, 1550, 1625 nm

Temperature cycling -60°C to $+85^{\circ}\text{C} \le 0.05$ dB/km Temperature Humidity cycling -10°C to $+85^{\circ}\text{C}/98\%\text{RH} \le 0.05$ dB/km

Water immersion $+23^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Dry heat $+85^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Damp heat $+85^{\circ}\text{C/85\%RH} \leq 0.05 \text{ dB/km}$

^{*} After H_2 -aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureBand™-R [LL] 200µm" specification supports network design requirements for a 0.20 ps/r-km of maximum PMD link design value specified by ITU-T G.652.D and G.657.A1.

Document #: TR-21243C Issued #: Jan. 11th, 2024

G.652.D/G.657.A1

PureAccess™ 200µm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureAccess™ 200µm" made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A1 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports FTTH because of its excellent bending performance while maintaining compatibility with conventional SMF.

Fiber Optical Specifications

Attenuation

Attenuation at 1310 nm \leq 0.35 dB/km Attenuation at 1383 nm* ≤ 0.35 dB/km Attenuation at 1550 nm \leq 0.21 dB/km Attenuation at 1625 nm \leq 0.23 dB/km

Point Discontinuity (PD)

Point discontinuity at 1310/1550 nm ≤ 0.05 dB

Bending Induced Attenuation

Dending	Induced A	ttenuation	
Mandrel	Number	Wavelength	Attenuation
Radius	of Turns		
10 mm	1	1550 nm	\leq 0.75 dB
10 mm	1	1625 nm	\leq 1.5 dB
15 mm	10	1550 nm	\leq 0.25 dB
15 mm	10	1625 nm	≤ 1.0 dB

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $8.6 \pm 0.4 \, \mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300–1324 nm Zero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm \leq 18 ps/nm/km

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.06 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error ≤ 0.5 µm Cladding diameter $125.0 \pm 0.7 \, \mu m$ Cladding non-circularity ≤ 0.7% Fiber curl radius \geq 4.0 m

Coating Geometry

Coating diameter (Uncolored) 193 \pm 7 μ m Coating diameter (Colored) $205 \pm 7 \mu m$ Coating-Cladding concentricity

Mechanical Specifications

Proof Test Proof stress level 0.86 GPa (1.2%, 120 kpsi)

Coating Strip Force (F)

F (peak) $1.3 \text{ N} \le \text{F} \le 8.9 \text{ N}$ F (average) $1 N \le F \le 5 N$

Dynamic Tensile Strength

Unaged (median; 0.5 m) \geq 3.8 GPa (\geq 550 kpsi) Aged (median; 0.5 m) \geq 3.0 GPa (\geq 440 kpsi)

Fatique

Fatique 20 (nominal value)

Environmental Specifications

Environmental Test Conditions **Induced Attenuation** at 1310, 1550, 1625 nm Temperature cycling -60°C to +85°C ≤ 0.05 dB/km

Temperature Humidity cycling -10° C to $+85^{\circ}$ C/98%RH $\leq 0.05 \text{ dB/km}$

+23°C Water immersion \leq 0.05 dB/km Dry heat +85°C $\leq 0.05 \text{ dB/km}$ $+85^{\circ}\text{C}/85\%\text{RH} \leq 0.05 \text{ dB/km}$ Damp heat

^{*} After H₂-aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureAccess™ 200µm" specification supports network design requirements for a 0.20 ps/rkm of maximum PMD link design value specified by ITU-T G.657.A1.

Document #: TR-24006A Issued #: Jan. 11th, 2024

G.652.D/G.657.A1

PureAccess™ 180μm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureAccess™ 180µm" made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A1 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports FTTH because of its excellent bending performance while maintaining compatibility with conventional SMF.

Fiber Optical Specifications

Attenuation

 $\begin{array}{lll} \text{Attenuation at } 1310 \text{ nm} & \leq 0.35 \text{ dB/km} \\ \text{Attenuation at } 1383 \text{ nm*} & \leq 0.35 \text{ dB/km} \\ \text{Attenuation at } 1550 \text{ nm} & \leq 0.21 \text{ dB/km} \\ \text{Attenuation at } 1625 \text{ nm} & \leq 0.23 \text{ dB/km} \\ \end{array}$

Point Discontinuity (PD)

Point discontinuity at 1310/1550 nm \leq 0.05 dB Coating diameter (Uncolored) 170 \pm 7 μ m

Bending Induced Attenuation

Dending	IIIdacca /	<u>iccerraacion</u>	
Mandrel	Number	Wavelength	Attenuation
Radius	of Turns		
10 mm	1	1550 nm	\leq 0.75 dB
10 mm	1	1625 nm	\leq 1.5 dB
15 mm	10	1550 nm	\leq 0.25 dB
15 mm	10	1625 nm	≤ 1.0 dB

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $8.6 \pm 0.4 \,\mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nmZero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm $\leq 18 \text{ ps/nm/km}$

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.06 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error $\leq 0.5~\mu m$ Cladding diameter 125.0 \pm 0.7 μm Cladding non-circularity $\leq 0.7\%$ Fiber curl radius $\geq 4.0~m$

Coating Geometry

Coating diameter (Uncolored) $170 \pm 7 \mu m$ Coating diameter (Colored) $180 \pm 7 \mu m$ Coating-Cladding concentricity $\leq 10 \mu m$

Mechanical Specifications

Proof Test Proof stress level 0.69 GPa (1.0%, 100 kpsi)

Coating Strip Force (F)

F (peak) $0.6 \text{ N} \le \text{F} \le 8.9 \text{ N}$ F (average) $0.6 \text{ N} \le \text{F} \le 5 \text{ N}$

Dynamic Tensile Strength

Unaged (median; 0.5 m) \geq 3.8 GPa (\geq 550 kpsi) Aged (median; 0.5 m) \geq 3.0 GPa (\geq 440 kpsi)

<u>Fatigue</u>

Fatigue 20 (nominal value)

Environmental Specifications

Environmental Test Conditions Induced Attenuation at 1310, 1550, 1625 nm

Temperature cycling -60° C to $+85^{\circ}$ C ≤ 0.05 dB/km

Temperature Humidity cycling -10° C to $+85^{\circ}$ C/98%RH ≤ 0.05 dB/km

Water immersion $+23^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Dry heat $+85^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Damp heat $+85^{\circ}\text{C/85\%RH} \leq 0.05 \text{ dB/km}$

^{*} After H₂-aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureAccess™ 180µm" specification supports network design requirements for a 0.20 ps/rkm of maximum PMD link design value specified by ITU-T G.657.A1.

Document #: TR-21245C Issued #: Jan. 11th, 2024

G.652.D/G.657.A2/G.657.B2

PureAccess™[A2] 200µm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureAccess™ [A2]" in 200 µm coating diameter for a reduced cable diameter design. "PureAccess™ [A2]" is made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A2 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports access networks including last one-mile applications such as FTTH, due to its excellent bending performance while maintaining compatibility with conventional SME.

Fiber Optical Specifications

Attenuation

 $\begin{array}{lll} \text{Attenuation at 1310 nm} & \leq 0.35 \text{ dB/km} \\ \text{Attenuation at 1383 nm*} & \leq 0.35 \text{ dB/km} \\ \text{Attenuation at 1550 nm} & \leq 0.21 \text{ dB/km} \\ \text{Attenuation at 1625 nm} & \leq 0.22 \text{ dB/km} \\ \end{array}$

Point Discontinuity (PD)

Point discontinuity at 1310/1550 nm \leq 0.05 dB

Bending Induced Attenuation

Denuing	maucea .	Attenuation		
Mandrel	Number	Wavelength	Attenuation	
Radius	of Turns			
7.5 mm	1	1550 nm	\leq 0.5 dB	
7.5 mm	1	1625 nm	\leq 1.0 dB	
10 mm	1	1550 nm	\leq 0.1 dB	
10 mm	1	1625 nm	\leq 0.2 dB	
15 mm	10	1550 nm	\leq 0.03 dB	
15 mm	10	1625 nm	\leq 0.1 dB	

Cut-off Wavelength

Cable cut-off wavelength $(\lambda_{cc}) \le 1260 \text{ nm}$

Mode Field Diameter (MFD)

MFD at 1310 nm $8.6 \pm 0.4 \, \mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nmZero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm $\leq 18 \text{ ps/nm/km}$

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.06 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error $\leq 0.5 \ \mu m$

Cladding diameter $125.0 \pm 0.7 \mu m$

Cladding non-circularity $\leq 0.7\%$ Fiber curl radius $\geq 4.0 \text{ m}$

Coating Geometry

Coating diameter (Uncolored) 193 \pm 7 μ m Coating diameter (Colored) 205 \pm 7 μ m Coating-Cladding concentricity \leq 10 μ m

Mechanical Specifications

Proof Test

Proof stress level (Uncolored) 0.86 GPa (1.2%, 120 kpsi) (Colored) 1.07 GPa (1.5%, 156 kpsi)

Coating Strip Force (F)

 $\begin{array}{ll} \text{F (peak)} & \text{1.3 N} \leq \text{F} \leq 8.9 \text{ N} \\ \text{F (average)} & \text{1 N} \leq \text{F} \leq 5 \text{ N} \\ \end{array}$

Dynamic Tensile Strength

Unaged (median; 0.5 m) \geq 3.8 GPa (\geq 550 kpsi) Aged (median; 0.5 m) \geq 3.0 GPa (\geq 440 kpsi)

<u>Fatique</u>

Fatigue 20 (nominal value)

Environmental Specifications

Environmental Test Conditions Induced Attenuation at 1310, 1550, 1625 nm

Temperature cycling -60°C to $+85^{\circ}\text{C} \le 0.05 \text{ dB/km}$

Temperature humidity cycling -10° C to $+85^{\circ}$ C/98%RH $\leq 0.05 \text{ dB/km}$

 $\begin{array}{lll} \text{Water immersion} & +23^{\circ}\text{C} & \leq 0.05 \text{ dB/km} \\ \text{Dry heat} & +85^{\circ}\text{C} & \leq 0.05 \text{ dB/km} \\ \text{Damp heat} & +85^{\circ}\text{C/85\%RH} & \leq 0.05 \text{ dB/km} \\ \end{array}$

^{*} After H_2 -aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureAccess™ [A2] 200µm" specification supports network design requirements for a 0.20 ps/r-km of maximum PMD link design value specified by ITU-T G.657.A2.

Document #: TR-21246B Issued #: Mar. 29th, 2023

G.652.D/G.657.A2/G.657.B2

PureAccess™[A2] 180µm

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureAccess™ [A2]" in 180 µm coating diameter for a reduced cable diameter design. "PureAccess™ [A2]" is made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A2 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports access networks including last one-mile applications such as FTTH, due to its excellent bending performance while maintaining compatibility with conventional

Fiber Optical Specifications

Attenuation

Attenuation at 1310 nm \leq 0.35 dB/km Attenuation at 1383 nm* ≤ 0.35 dB/km Attenuation at 1550 nm \leq 0.21 dB/km Attenuation at 1625 nm \leq 0.22 dB/km

Point Discontinuity (PD)

Rending Induced Attenuation

Denuning .	<u>muuceu At</u>	<u>.tenuation</u>	
Mandrel	Number	Wavelength	Attenuation
Radius	of Turns		
7.5 mm	1	1550 nm	\leq 0.5 dB
7.5 mm	1	1625 nm	\leq 1.0 dB
10 mm	1	1550 nm	\leq 0.1 dB
10 mm	1	1625 nm	\leq 0.2 dB
15 mm	10	1550 nm	\leq 0.03 dB
15 mm	10	1625 nm	\leq 0.1 dB

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $8.6 \pm 0.4 \, \mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nm Zero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm \leq 18 ps/nm/km

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.06 ps/rkm

* After H₂-aging in accordance with IEC 60793-2-50

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error ≤ 0.5 µm Cladding diameter $125.0 \pm 0.7 \, \mu m$ Cladding non-circularity ≤ 0.7% Fiber curl radius \geq 4.0 m

Coating Geometry

Point discontinuity at 1310/1550 nm $\,\,\leq 0.05$ dB $\,\,$ Coating diameter (Uncolored)170 \pm 7 μm Coating diameter (Colored) $180 \pm 7 \mu m$ Coating-Cladding concentricity ≤ 10 µm

Mechanical Specifications

Proof Test	
Proof stress level	0.69 GPa (1.0%, 100 kpsi)
Coating Strip Force (F)	
F (peak)	0.6 N ≤ F ≤ 8.9 N
F (average)	$0.6~N \leq F \leq 5~N$
Dynamic Tensile Strength	
Unaged (median; 0.5 m)	≥ 3.8 GPa (≥ 550 kpsi)
Aged (median; 0.5 m)	\geq 3.0 GPa (\geq 440 kpsi)
Fatigue	
Fatigue	20 (nominal value)

nvironmental Specifications				
	Environmental Test	Conditions	Induced Attenuation at 1310, 1550, 1625 nm	
	Temperature cycling	-60°C to +85°C		-
	Temperature Humidity cyc	cling -10°C to +85°C	C/98%RH $\leq 0.05 \text{ dB/km}$	1
	Water immersion	+23°C	≤ 0.05 dB/km	
	Dry heat	+85°C	≤ 0.05 dB/km	
	Damp heat	+85°C/85%RH	≤ 0.05 dB/km	

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureAccess™ [A2] 180µm" specification supports network design requirements for a 0.20 ps/rkm of maximum PMD link design value specified by ITU-T G.657.A2.