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Millimeter-wave GaN HEMTs are expected to be used in higher-capacity wireless communications, but the large nonlinear 
components such as short-channel effects, have challenges in creating the large-signal models that are essential for amplifier 
fabrication. In this report, we have developed an innovative model that an artificial neural network (ANN) is applied only to the 
current source to avoid over-fitting issues. To create this model, pulsed I-Vs/S-parameters measurement data up to 120 GHz were 
used. The proposed model is the first to demonstrate large-signal power performances at 71 GHz in high accuracy.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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1. Introduction

The millimeter-wave band is expected to be utilized 
for high-capacity communication systems and high-resolu-
tion radar systems because of its wide bandwidth and high 
frequency(1). To realize millimeter-wave band applications, 
a highly accurate large-signal model for millimeter-wave 
GaN HEMTs is required.

For large-signal GaN HEMT models, compact 
models, such as the Angelov model(2) and the AMCAD 
model,(3),(4) have been commonly used. These models 
consist of lumped elements, such as current sources, resis-
tors, inductances, and capacitances, with bias and 
frequency dependencies described by functions that can 
calculate DC, small-signal, and large-signal behaviors. 
However, it has been very difficult to represent the current-
voltage (I-V) waveform of a millimeter-wave GaN HEMT 
as functions because the nonlinear waveform shows 
extraordinary complexity due to short-channel effects*1 
and other factors.

Recently, artificial neural network (ANN)-based 
models have attracted much attention as large-signal 
models that can represent such high nonlinearity.(5)–(7) ANN 
models have been applied to sub-6-band GaN HEMTs for 
base stations, and some studies report the representation of 
memory effects. However, it is difficult to apply an ANN 
to a millimeter-wave band model because measured data 
of millimeter wave S-parameters*2 are unstable due to 
their low signal-to-noise ratio. It will cause an overfitting 
problem when the measured data is directly taken as the 
training data of deep learning.

In this work, we propose an ANN modeling flow 
optimum for millimeter-wave GaN HEMTs. We have 
developed an ANN model, in which only a current source 
with low noise effects represented by an ANN. Parasitic 
elements are extracted from the S-parameters at each bias 
point using small-signal equivalent circuits and represented 
by nonlinear functions to avoid noise effects. Resistances 
and inductances are extracted from the lumped elements of 
the data points near the load line.

This ANN model has successfully elaborated the I-V 
waveforms affected by the current collapse and short-

channel effects, and the S-parameters in the millime-
ter-wave band.

2. Large-signal ANN Modeling

The proposed large-signal model for millimeter-wave 
GaN HEMTs is shown in Fig. 1. Capacitances (Cgs, Cgd, 
Cds) were modeled by nonlinear functions, and only current 
sources in the center were modeled by an ANN. As shown 
in the modeling flow in Fig. 2, these models require the 
calculation of built-in potentials Vgsi, Vgdi, and Vdsi.(8)

This section is organized as follows: In section 2-1, 
the extraction of small-signal equivalent circuit parameters 
and calculation of built-in potentials are explained. In 
section 2-2, capacitance modeling is explained in detail. In 
section 2-3, current source modeling is explained, and 
ANN modeling performance is demonstrated and 
discussed.
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Fig. 1.  Large-signal ANN model for millimeter-wave GaN HEMTs
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2-1 Small-signal parameters extraction and calculation 
of intrinsic potentials
The pulsed I-Vs and S-parameters (1–120 GHz) were 

measured. After manifolds*3 were de-embedded from the 
measurements, parameters of the small-signal equivalent 
circuit were extracted using the small-signal model at all 
the bias points shown in Fig. 3. To determine each resis-
tance (Rg, Rs, Rd) and inductance (Lg, Ls, Ld), a load line 
with a maximum output power from the I-V waveforms 
was assumed by calculation, and parameters at the bias 
points near the load line were extracted. In addition, the 
median values of (Rg, Rs, Rd) and (Lg, Ls, Ld) at the 
extracted bias points were used for the ANN model. This 

method provides highly accurate results for large-signal 
calculations. The built-in potentials are expressed as 
follows:

    .............  (1)
    .............  (2)

    .........................  (3)
2-2 Capacitance modeling

Bias-dependent parameters for each capacitance (Cgs 
vs Vgsi, Cgd vs Vgdi, and Cds vs Vdsi) are used as follows:

                                                                     ............  (4)

                                                                             ....  (5)

where C0, C1, C2, Vm, and Vp are the fitting parameters and 
Vi is the built-in potential for each C.(3),(4) The error function 
is defined as follows:

                                      ...........................................  (6)

where Cmeas and Csim are the measured C and simulated C 
respectively, and N is the total number of data points. 
2-3 ANN current source modeling

To model the current source, a fully connected ANN 
with three hidden layers as shown in Fig. 4 was trained 
with I-V waveforms. The sigmoid function was selected as 
an activation function.

                                .................................................  (7)

Training was performed using TensorFlow,*4 and the 
optimization method was based on the optimization func-
tion ADAM*5 provided by TensorFlow.

Figure 5 shows the I-V waveforms measured and 
simulated by the ANN and compact models. The ANN 
model fully represents the measured IDS waveforms. In 
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Fig. 2.  Modeling flow of the ANN model
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Fig. 3.  Small-signal model for GaN HEMTs

Fig. 4.  ANN for I-V waveforms

Fig. 5.  I-V waveforms of (a) ANN model and (b) Compact model
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contrast, the conventional compact model has large devia-
tions from the measured values. These results indicate the 
powerful modeling ability of an ANN.

3. ANN Model Verification

The millimeter-wave GaN amplifier fabricated to 
verify the calculation accuracy of the ANN model is shown 
in Photo 1. The amplifier consists of a GaN HEMT, an 
input matching network, and an output matching network.

The developed model was implemented using 
Verilog-A*6 in an RF circuit simulator (ADS*7). Figure 6 
shows a comparison between the measured and simulated 
DC/S- parameters. The waveforms of IDS-VDS and IGS-VDS, 
and small-signal characteristics over a wide frequency 
range of 1–120 GHz were well modeled.

Figure 7 (a) shows the large-signal characteristics of 
the 71 GHz amplifier at Zsource = 50 + 0j Ω and Zload = 50 + 
0j Ω. The measured and simulated values of output power 
Pout, transducer gain Gain, and power added efficiency PAE 
at 71 GHz agreed well. In addition, Fig. 7 (b) shows the 
large-signal characteristics of the impedance-matched 
amplifier at Zsource = 117.2 + 38.4j Ω and Zload = 51.2 + 28j 
Ω. The simulated values also agreed well with the 
measured values. These figures show that even with 
different impedances, the ANN model can calculate large-

signal characteristics with high accuracy. Through the 
above-mentioned comparisons, it is shown that the ANN 
model can simulate the DC, S-parameters, and large-signal 
behaviors for millimeter-wave GaN HEMT performance 
with high accuracy. 

4. Conclusion

We have developed the world’s first large-signal 
model for millimeter-wave GaN HEMTs based on an ANN. 
To avoid overfitting problems, we applied an ANN only to 
the current sources of the compact model. Pulsed I-Vs/
S-parameters measurement data up to 120 GHz were used 
to extract the parameters for the ANN.

The ANN has successfully modeled I-V waveforms 
with high accuracy, exceeding the performance of the 
conventional compact model. To verify the accuracy of the 
proposed modeling, we have implemented the ANN-based 
model in an RF circuit simulator using Verilog-A and found 
excellent agreement between the measured and calculated 
values of DC/small signal over a wide frequency range of 
1–120 GHz. Furthermore, we have fabricated a 71 GHz 
amplifier and also found large-signal characteristics to be 
in good agreement. Since this model enables highly sophis-
ticated high-frequency circuit design, we expect a higher 
performance of high-frequency amplifiers in the future. 
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Photo 1.  Millimeter-wave GaN amplifier

Fig. 6.  Measured and ANN-simulated DC/S-parameters
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Fig. 7.  Measured and ANN-simulated large signal performances for 
different impedances at 71 GHz. The impedances at 

(a) Zsource = 50 + 0j Ω and Zload = 50 + 0j Ω, and 
(b) Zsource = 117.2 + 38.4j Ω and Zload = 51.2 + 28j Ω
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Technical Terms
＊1  Short-channel effects: A general term for the effects 

when the gate length is further reduced. Drain leakage 
current under the gate increases substantially.

＊2  S-parameters (scattering parameters): A set of the circuit 
network parameters that describe the characteristics 
of high-frequency circuits.

＊3  Manifold: A circuit (pad) that is used to evaluate 
HEMTs.

＊4  TensorFlow: A Google-developed software library for 
machine learning. TensorFlow is a registered 
trademark of Google LLC.

＊5  ADAM (adaptive moment): A kind of optimization 
algorithm.

＊6  Verilog-A: A programming language that requires a 
compiler. Useful for modeling analog circuits.

＊7  ADS (Advanced Design System): A circuit simulator 
developed by Keysight Technologies.
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