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INFOCOMMUNICATIONS

1. Introduction

Data communication traffic keeps on increase 
owing to an evolution of higher-resolution video 
streaming service and the wide spread of mobile 
devices, among others. Digital coherent technology 
with multilevel modulation formats is an attractive solu-
tion to satisfy the strong traffic demand and has already 
been adopted in 100-Gbit/s ultra-long haul systems. In 
the next generation, the application area will be 
extended to metropolitan area networks, which require 
smaller-sized, lower-power optical components to 
realize higher port density and larger transmission 
capacity per single port(1).

We have demonstrated 128-Gbit/s dual-polariza-
tion quadrature phase shift keying (DP-QPSK*1) modu-
lators and receivers realized compactness by using 
InP-based optical devices(2),(3). This paper outlines that a 
224-Gbit/s dual-polarization 16-ary quadrature ampli-
tude modulation (DP-16QAM*2) modulator module, 
which includes all of an InP-based modulator, four linear 
driver ICs, and polarization multiplexing micro-optics, 
exhibits performance comparable to LiNbO3-based 
modulators(4).

2. Chip Characteristics

2-1 Modulator chip
(1) Design of the modulator chip

Figure 1 (a) shows the top view photograph of the 
modulator chip. Figure 1 (b) shows the cross-sectional 
view of the modulator section.

Four Mach-Zehnder modulators (MZMs) were 
monolithically integrated in one modulator chip. The 
length of the modulator section was 3 mm. A differen-
tial S-G-S type electrode configuration was adopted to 
reduce the area of RF line traces. The differential char-
acteristic impedance of the modulator section was 
designed to be 90 ohm (Ω).

We used deep-ridge optical waveguides because 
of the advantages of compact routing of light and low 
capacitance between S-G electrodes(5). The width and 
height of the waveguides were 1.6 µm and 3 µm respec-
tively. The core material of the waveguides was 
undoped AlGaInAs multi quantum wells (MQWs), which 
led to higher modulation efficiency that was a large 
index change with low optical loss at a high bias 
voltage. The waveguides were buried with a thick 
benzocyclobutene (BCB) layer in the modulator section 
to feed RF transmission lines.

(2) Characteristics of the modulator chip
Figure 2 shows the measured waveguide width 

dependence of optical propagation loss. The propaga-
tion loss for 1.6-µm width waveguides was less than 
0.25 dB/mm over the C band. This result indicates that 
scattering loss at the sidewall of fabricated deep-ridge 
waveguides and absorption loss were suppressed 
adequately.

Figure 3 shows the optical loss increase due to the 
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reverse bias voltage applied to the modulator section. 
The loss increase was less than 1 dB, even with high 
voltages of up to 11 V at a wavelength of 1570 nm.

Figure 4 shows the typical DC extinction charac-
teristic for a wavelength of 1570 nm. We obtained a DC 
extinction ratio (ER) of more than 25 dB with a reverse 
bias voltage of 11 V.

2-2 Linear driver IC
(1) Design of the linear driver IC

Figure 5 shows the block diagram of the linear 
driver IC. We adopted a traveling wave amplifier (TWA)(6) 
to achieve both a high-speed operation and low return 
losses. The TWA stage consisted of 6 distributed linear 
amplifier unit cells and coplanar lines, and differential 
90-ohm output termination. A single TWA stage config-
uration allowed for a high linearity with low power dissi-
pation.

We added a gradual frequency peaking to Sdd21 of 
the linear driver IC to compensate for RF losses in the 
module.

The typical differential output voltage swing of the 
driver IC was 2.5 Vpp.  We calibrated the above 
mentioned modulator so that the output voltage swing 
of the driver IC would correspond to 1.0 Vπ. Although 
this driving condition of 1.0 Vπ decreased the peak 
optical output power by 3 dB, compared with the 
condition of 2.0 Vπ, this under-drive modulation could 
save the power dissipation of the ICs, eliminate induc-
tors for DC biasing, and reduce a nonlinear distortion of 
a sinusoidal optical field response of the modulator.

The chip size of one IC was 1 .1 × 2.1 mm2, and total 
assembly area for four ICs was only 9.0 × 2.1 mm2 thanks 
to the inductor-less design. The driver IC was fabricated 
with an InP double heterojunction bipolar transistor 
(DHBT) technology with a maximum cut-off frequency 
(ft) of 150 GHz and a maximum oscillation frequency 
(fmax) of 200 GHz.

(2) Characteristics of the linear driver IC
Figure 6 (a) shows measured s-parameters. Both 

Sdd11 and Sdd22 were below -10 dB up to 50 GHz. A 
3-dB cut off frequency of Sdd21 reached 45 GHz. A 
gradual peaking of Sdd21 from 3 GHz to 28 GHz 
compensated for RF losses of the modulator module.

Figure 6 (b) shows the total harmonic distortion 
(THD) of 1 GHz sinusoidal wave input as a function of 
the differential output voltage. THD was around 2.5 
percent (%) even at the differential output voltage of 
2.5 Vpp.
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Figure 6 (c) shows an electrical output eye diagram 
with 28-Gbaud/s 4-level amplitude modulation. In this 
case, the differential input voltage swing was 650 
mVpp, which can be supplied by the digital-to-analog 
converter (DAC) directly. The differential output voltage 
swing was 2.5 Vpp. Clear 4-level eye openings were 
observed. 

3. Characteristics of the Modulator Module

Photo 1 and Figure 7 show an appearance of the 
modulator module and a block diagram of the modulator 
module respectively. The modulator module included all 

of an InP-based modulator chip monolithically inte-
grating four MZMs, four linear driver ICs, polarization 
multiplexing micro-optics, and thermo-electric cooler 
(TEC) for the modulator chip and the micro-optics. To 
minimize the package size, we located the input and 
output fibers on the same side of the package and RF 
interfaces on the opposite side. The modulator module 
size was only 34.0 × 16.5 × 6.0 mm3.

Figure 8 (a) and (b) show small-signal E/O response 
and Sdd11 of each channel of modulators respectively. 
There were two dips around 17.5 GHz and 21 GHz in E/O 
response due to relatively high Sdd11 caused by 
mismatch losses at RF input interfaces. Ignoring these 
mismatch losses, a 3-dB cut-off frequency of this 
module was around 20 GHz.

Figure 9 shows experimental results of single 
polarization (SP)-16QAM operation for both 14 Gbaud/s 
and 28 Gbaud/s. Figure 9 (a) and (b) show the back-
to-back bit error rate (BER) as a function of optical 
signal-to-noise ratio (OSNR). Figure 9 (c) and (d) show 
the sample recovered 16QAM constellations*3 of this 
work. In this experimental setup, tunable lasers with 
linewidth of about 500 kHz were used, and a 
50-Gsamples/s oscilloscope was used to digitize the 
electrical outputs of a coherent receiver. Results of 
LiNbO3-based modulator, a 3-dB bandwidth was over 
22 GHz, measured in the same experimental setup and 
theory lines(7) are also plotted for a comparison in Fig. 9 
(a) and (b). In these results, the difference between this 
work and LiNbO3-based modulator was small. At 10-3 of 
BER curves, the deviations of this work from theoreti-
cally expected values were within 2.8 dB for 14 Gbaud/s 
and 5.6 dB for 28 Gbaud/s.

The power dissipation of this module was lower 
than 3.2 W, of which 2.4 W were for the four driver ICs 
and 0.8 W for the TEC.
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4. Conclusion

We developed InP-based modulators and linear 
driver ICs, which enabled a compact and low-power 
modulator module. The size of the modulator module, 
including all of an InP-based modulator, four linear 
driver ICs, and polarization multiplexing micro-optics, 
was just 34.0 × 16.5 × 6.0 mm3. We demonstrated that a 
224-Gbit/s DP-16QAM modulator module has perfor-
mance comparable to LiNbO3-based modulators.

Technical Terms
＊ 1  DP-QPSK: Dual-Polarization (DP) Quadrature 

Phase Shift Keying (QPSK). QPSK is a modulation 
method that uses four phase states, which are 
different by 90 degrees in each.

＊2  16QAM: 16-ary Quadrature Amplitude Modulation. 
16QAM is a modulation method that combines two 
carriers whose phases are different by 90 degrees 
and whose amplitudes are modulated into four 
levels independently. One modulated signal can 
represent 16 states on a complex plane. With 
DP-16QAM, 8-bit data can be transmitted in one 
time slot.

＊3  Constellation: A figure which expresses the phase 
and amplitude of data signals on a complex plane.
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