
SEI TECHNICAL REVIEW · NUMBER 77 · OCTOBER 2013 · 79

AUTOMOTIVE

1. Introduction

We develop electrical control units (ECUs*1). ECU
software (hereinafter referred as “vehicle-embedded soft-
ware”) is less likely to have a completely new design, and
in many cases, the former model design is used in the de-
velopment process of the software. When the former de-
sign is used, the former test pattern is also used in order to
ensure software quality. However, there is the possibility
that the entire design of the vehicle may be reviewed for
functional decomposition to multiple ECUs and the design
changes of connection interfaces. In this case, test patterns
should be modified due to the changes of signal I/O inter-
faces for each ECU, even though the basic functions of the
vehicle are not changed.

On the other hand, the vehicle-embedded software
tends to be more complex and larger(1). To solve the issues
of the increase in the number of test items and risks for val-
idation errors, the model-based development method has
been promoted in the automobile industry(2). In this
method, design verification is conducted by simulation
using a design drawing (model) (MILS*2) (Fig. 1). This
method enables us to improve the design quality, minimize
rework, and detect bugs during the test process(3). More-
over, by using the common test patterns in the phases of
design simulation and ECU testing, the efficiency of the
entire development process can be improved. However,
signal I/O timing may vary due to the variations of the sig-
nal I/O interfaces between the model and ECUs intended
for verification (HILS*3). These issues may form a bottle-
neck in achieving the standardization.

This paper describes how we can improve the effi-
ciency in embedded software development by reusing the
former design. In our experiment, we first worked on the
technology of using the common test patterns for I/O in-
terfaces of ECUs before and after the design change. We
then used the common test patterns at the phases of ECU
testing and design simulation, with the technology speci-
fied above, to achieve high efficiency in the model-based
development.

2. Quality of ECU Common Development Process

2-1 Issues on design modification of test patterns
For software development with the former design, test

patterns need to be modified in some cases even if the
functions of the model have not been changed. This sec-
tion shows an example of these cases.

As shown in Fig. 2, the functions of one ECU are allo-
cated to multiple ECUs. In Structure (a), one ECU controls
the functions of receiving an input signal from “SW_X” and
transmitting the output signal to load “RLY_Y.” In Struc-
ture (b), ECU-1 receives the input signal from “SW_X” and
then the ECU-2 transmits the output signals to “RLY_Y.”

By regulating the multiple ECUs via network commu-
nications, it is possible to reduce costs by shortening the en-
tire length of vehicle wiring systems. If the structure of the
ECU is changed, ECU test pattern in Structure 1 can be
converted to the ECU-1 and ECU2 in Structure 2 for testing
the same functions to achieve the effective test design.

As shown in Figs. 2 (c), (d), many changes should be

In recent years, automotive components have become more sophisticated and the electronic control unit (ECU) has
employed more complex large-scale software. As the product scale becomes larger, an increasing number of tests are
required to assure product quality. Even in the case that the auto-testing tools are used, test patterns need to be input
manually. This process requires significant amounts of man-hours particularly when the product types vary and the test
patterns need to be modified for input signal changes. In order to improve the efficiency of this product development
process, we have developed a tool that converts the simulation patterns used in model-based design into those for
product tests. This tool automatically adjusts the input signals, and thus, successfully reduces the man-hours by 50%
and improves the test quality with common test patterns.

Keywords: software, test method, model based development

Test Automation Support Tool for Automobile Software

Tomomi KATAOKA*, Ikuko SAKA, Ken FURUTO, Tatsuji MATSUMOTO

System Specification

Software Design

Unit Design

Coding

Unit Test

Integration Test

System Test

SILS

MILS

HILS

Actual Test for ECU

Design Simulation

MILS SILS HILS

ECUs Model Model Actual Unit

Control Unit Model Program Program

Vehicle Model Model Model

Fig. 1. Model-based Development Process

made to the test pattern due to the variations of interfaces
such as presence or absence of the signals and respective
I/O signal types (a direct connection*4 or network commu-
nications).

In Figs. 2 (e), (f), we compared the switch timing,
based on the test patterns between “ECU in Structure 1”
and “ECU2 in Structure 2.” This is an example of changing
the input interfaces from a “direct connection” to “CAN*5.”

The filter processing is performed using the software
to retrieve information of the switch input from a “direct
connection.” The filter processing is to monitor the signal
state at regular time intervals. If the condition remains con-
stant beyond a predetermined time, then it is judged as
input information inside of the software. This function is
also incorporated into the vehicle-embedded software to
eliminate chattering of the contact switch. For Structure 1,
the switch input operation by a user is judged as the inter-
nal information of the software, after a certain period of
time of filter processing (Ta). On the other hand, for the
ECU2 pattern in Structure 2, filter processing may not be
triggered to receive information of the switch input via net-
work communications on the ECU-2 side, because filter
processing is already complete on the ECU1 side. There-
fore, the time from the signal input to output may differ
between those test patterns. Then, it is required to adjust
the time duration from the signal input to output, in addi-
tion to the changes of I/O interfaces, I/O signal types, and
presence or absence of signals.

In order to respond to the variations of I/O interfaces
and timings for ECUs, design of each test pattern should
be modified manually. Although the commercially avail-
able auto-testing tool is used to enhance the efficiency of
testing, it is required to change the test patterns. For ECU
software used for the body control module*6, which is our

development target, the affected area tends to be extensive,
due to the increased number of changes for I/O interfaces
for multiple I/O signals involved in this software.

Because of the significant amount of workload, there
is the possibility that errors may occur due to a human in-
tervention in creating the test patterns, and we were con-
cerned about the product quality.
2-2 I/O signal allocation and conversion tool

To resolve the problems specified in 2-1, we developed
a tool called “signal allocation and conversion tool” to au-
tomatically convert the changes in I/O signal allocations,
such as signal names, input types, and input timing, based
on the original test pattern.

To be concrete, the “basic test pattern” is created in
advance, according to the timing of switch input and the
recognition of input information, as shown in Fig. 3 (a). As
for the input type of a “direct connection,” time duration
(Ta) from the timing of switch input to that of input con-
firmation is moved to an earlier point, by filter processing.
So, the test pattern that changes at the earlier point can be
created automatically, as shown in Fig. 3 (b).

These allocation and conversion tools have several pa-
rameters that can be set separately for each signal included
in the test patterns (Table 1). Necessary items for various
test patterns related to signal names, input types, input tim-
ing, and deleting the signals, can be set to the parameter,
although the functions are the same. Data can be consoli-
dated using one setting file.

Time base, which is used to adjust timings, can be set
in a manner relative to the original test pattern. If the test
pattern exists for a specific car model, it enables us to con-
vert test patterns directly to the other input types without
creating the “basic test pattern” again.

80 · Test Automation Support Tool for Automobile Software

Before Design Change (Original) After Design Change (Changes are made)

ECU

(c) I/O Signals -Structure 1 (d) I/O Signals -Structure 2

SW_X
ECU-1

SW_X
ECU-2

RLY_Y
Activation

CAN_Sw_X

RLY_Y
Activation

ECU

SW_X RLY_Y

ECU-1

SW_X

ECU-2

RLY_Y

(a) 1 ECU (Structure 1) (b) 2 ECUs -Structure2

A direct Connection
Communication

SW_X
ON
OFF

RLY_Y
ON
OFF

(Internal
Information)

(Internal
Information)ON

Ta: Filtering Processing Time

Ta

SW_X
ON
OFF

RLY_Y
ON
OFF

ON Ta

CAN_Sw_X
ON

(e) Test Patterns -Structure 1 (f) Test Patterns -Structure 2
ECU

ECU-1

ECU-2

Fig. 2. ECU Structure and Test Patterns

ON
OFF
ON
OFF

→ t
Input Data

ON
OFF

Output Expected Value
Load Activation

ON
OFF

Ta
→ t

Output
Expected Value

(Internal Information)
ON

Input Data
Switch Operation
(Direct Connection) Move to the earlier timing

ON

Output Expected Value
Load Activation

ON
OFF

→ t

(Internal Information) ON

Input Information
Switch Operation (CAN)

Ta=Time duration until the input
 filter is confirmed.

(a) Standard Test Patterns

(b) Test Patterns for a Direct Connection

(c) Test Patterns for Communication

Fig. 3. Examples of Signal Input Timing

2-3 Efficiency of signal allocation conversion tools
In this experimental study, we assumed that the type of

an input signal was changed and then test patterns were cre-
ated for the specific car model. We experimentally com-
pared the man-hours required for the development work
in the following two conditions; (1) test patterns are manu-
ally changed and (2) the allocation-conversion tool is used.

In this experiment, nine types of input signals are con-
verted from those of the original car model. We assumed
that 20% of the functions could be affected in the later
model after changes are made. The result is that when the
tool specified in (2) is used, actual man-hours required for
the test pattern changes are reduced by approximately
20% compare to manual work specified in (1).

The automation of test pattern changes prevents er-
rors in converting signals due to oversight. This tool makes
it possible to improve the design quality at an earlier phase
of testing.

3. High-Efficiency of Model-based Development

3-1 Problems on software testing for model-based
development
For the model-based development, the accuracy of the

control function is verified by simulation at the design
phase. Simulation tests are conducted for three targets: the
designed model (MILS), the source code (program) re-
trieved from the model (SILS*7), and the ECU embedded
with the program (HILS) (Fig. 1).

It is necessary to verify that the model, program, and
ECU respond to the input signals in the same way. There-
fore, common test patterns should be used for MILS, SILS,
and HILS to enhance the work efficiency in the verification
process and secure product quality. However, the test

scopes differ between the model and ECUs, posing a prob-
lem in the use of common test patterns. The following de-
scribes the reasons why the scopes differ between ECU
testing and design simulation.

In general, vehicle-embedded software is composed of
three types of modules for input processing, applications,
and output processing (Fig. 4 (a)). In this structure, when
the I/O interfaces are changed, only the relevant modules
need to be replaced. As the entire configuration of the ap-
plication module is not affected, it can be effectively reused
for new software.

In this case, the design simulation is performed by each
function module of MILS application as shown in Fig. 4 (b).
Hence, internal signals of the software are used as input sig-
nals. For HILS, external signals of the hardware for ECUs are
used as input signals. As a result, signal confirmation timing
may be different between interfaces and the external part.

The following is an example of the input signals that are
generated at fixed intervals by the communication interfaces.

To check for ECU communication errors, we inter-
rupt the signals from the communication line deliberately
(shift from (a) to (b) in Fig. 5). If an input signal is not re-
trieved from the communication line after a specified time
(Fig. 5 (c)), the function is provided to set the value for
communication errors.

In test scenarios of design simulation, the model in-
tended for error testing is regarded as a function unit that
is independent from the communication interfaces. There-
fore, the specified value should be set to generate a signal
only for communication errors (Fig. 5 (d)).

To generate the output signals at the same timing be-
tween MILS and HILS, the test pattern must have the earlier
input timing, in order to interrupt the flow of signals from
the communication line before confirmation of communi-
cation errors inside the software, for test scenarios of HILS.

From the reasons above, test patterns for the models

SEI TECHNICAL REVIEW · NUMBER 77 · OCTOBER 2013 · 81

Table 1. Settings of Signal Allocation Parameters

No Items Descriptions

(1) I/O types I: Input to ECU /O: Output from ECU

(2) Packaging Types O: Packaging /N: No Packaging

(3) Basic Signals Signal name defined by the standard
test patterns

(4) Intended Unit Signals Destination signal name

(5) Intended Unit Frame Destination frame name
(as for CAN signals)

(6) Signal Types P: Port Signal /C: CAN Signal

(7) Adjusting Time for
“ON”(ms)

Adjusting time when switching
OFF to ON

(8) Adjusting Time for
“OFF”(ms)

Adjusting time when switching
ON to OFF

(1) (2) (3) (4) (5) (6) (7) (8)

I O SW_00 SW_X P 30 30

I O CAN_Sw_00 CAN_Sw_X F_CAN_Z C 0 0

(a) Descriptions of Signal Allocation Setting Parameter

(b) Settings of Signal Allocation Parameters

Direct
Connection

Input
Application
Function A Output

R_IN R_OUT

CAN
Input

Application
Function A Output

R_IN R_OUT

Application
Function AM_IN M_OUT

Replace

(a) Structure of ECU Software

(b) Input and Output Interface of the Model

Fig. 4. Software Structure and Model Interfaces

cannot be used alternately for ECU testing. As we discussed
in the previous chapter, the problem is the variation of
input signal types in test patterns. But the main issue here
is the variations of signal input timings. We concluded that
there is the method for absorbing the variations in each
test pattern according to input types used for the develop-
ment of the software to be reused.
3-2 Creating input signal conversion programs for HILS

We created an input signal converting program for
HILS, in order to absorb the variations of timing. This is
an example of the signal converting process specified in
Fig. 6.

In order to generate the output signals at the same
timing between MILS and HILS, communication errors
need to be generated outside the ECU before reaching the
point where the communication error state is detected in-
side the ECU.

Figure 6 shows that a waveform of the signal is gener-
ated to trigger interrupted periodic transmission of a com-
munication signal C, at the point where the input timing
is made earlier based on the reference point t1, where the

communication error state is confirmed, for test patterns
in MILS.

To clear the communication error state for test pat-
terns in MILS, a waveform of the signal is generated to
restart transmitting the periodic signal at the same timing
as t2, as the test pattern in HILS.

For this signal conversion program, the automatic con-
version function is incorporated to convert variations of
signal input timings between “network communications”
and a “direct connection,” as mentioned in 2-2. It enables
us to convert the signal variations within test patterns for
MILS to the signal input timing of the ECU in HILS.

The configuration of the newly developed test support-
ing tool is shown in Fig. 7. This tool is composed of the
input signal converter program and the evaluation pro-
gram, which absorbs the variations of test patterns auto-
matically for verification in MILS and HILS. The former is
to convert the variations of signal input timing automati-
cally, and the later is to absorb the output variations caused
by the hardware included in the ECU for HILS.

By providing these programs into the automatic test-
ing tool, this system is configured to covert the signal input
timing in real time during the HILS verification without
creating the files for the test patterns changed from MILS
to HILS.

As a result, only the basic test pattern files need to be
stored, and multiple test pattern files, including those for
various signal input timings, are not required any more.
This improvement enables us to reduce the time for file
management and enhance work efficiency.

3-3 Application to model development and effects
By applying this tool to the procedure of model-based

development, we evaluated the applicability of the tool for
the actual development project. The evaluation was per-
formed for a function with more than 20 types of the input
signals and 8 types of output signals.

By assuming that the auto-testing tool was used, we es-
timated that man-hours required for testing were reduced
by approximately 50% compare to those with the conven-
tional tool.

By completing the design simulations in upstream
process and applying the test patterns to the product test-
ing, we verified that the product quality was improved in a

82 · Test Automation Support Tool for Automobile Software

(a) Test Patterns in MILS
Identify communication errors

Communication Error
Signal A (input signal)
Signal X
(output expected value)

Clear communication errors

t1 t2

CAN Communication
Signal C (input signal)

t1 t2t0
Signal X
(Output Expected Value)

(b) Test Patterns in HILS

Test patterns changes automatically using
the program to convert input signals.

Stop periodic transmission
before identifying
transmission errors.

Restart cycle transmission when
the state of communication error
is cleared.

Fig. 6. Changing Test Patterns for Communication Errors

Auto-testing Tool

Input Signal

Output Expected Value

Test Patterns in MILS

Evaluation
Program

Input Signal
Converter

Verification
of ECUs

Evaluation Result
OK/NG

Automatic conversions for
variations of signal input timing.

Output variations are
absorbed for evaluations.

(File)

Test Patterns in HILS

(It is generated
in real time)

ECU Output Value

Input Signal

Fig. 7. Structure of Test-Supporting Tools

→ t

Communication
Input to ECU

(Software
Processing
inside ECU)

Input to
Model

Normal
State

Communication Error

Normal
State

Communication Error

EC
U

M
od

el

(a) Recieves regularly
 (Normal state)

(b) Stop receiving
 (Communication error occurs)

(c) Set the specified value.
Communication error is
confirmed after a
predetermined time is
elapsed.

(d) To input to the
model, the signal
state is the same
as specified in
the software
inside ECU.

Fig. 5. Difference in Signals between Models and ECUs

short time and the rework rate at the product testing phase
was minimized.

4. Conclusion

In this paper, we described development of a test-sup-
porting tool for more efficient testing and its effectiveness
in dealing with sophisticated software.

First of all, we established a technology that uses com-
mon test patterns for simulation before and after ECU de-
sign change to secure product quality at the common
software development. As a result, we achieved 20% reduc-
tion of man-hours required for changing the test patterns.

Secondly, as part of our efforts towards the model-
based development, we established a technology that uses
the common test patterns at a phase of design simulation
and ECU testing. Using the auto-testing tools, we achieved
approximately 50% reduction of man-hours compared to
previous conditions. We believe that it is possible to secure
product quality in a short time and minimize the rework
rate at the product testing phase.

We continue to make further efforts for improvement
of the evaluation process for the model-based develop-
ment, in order to achieve high efficiency and quality at the
development of vehicle-embedded software.

Technical Terms
*1 ECU (Electronic Control Unit): An electrical control

unit mounted on a vehicle.
*2 MILS (Model in the Loop Simulation): Software veri-

fication process intended for a designed model.
*3 HILS (Hardware in the Loop Simulation): ECU veri-

fication process in a simulated operating environment.
*4 Direct connection: Cable connection to transmit a sin-

gle signal.
*5 CAN (Controller Area Network): A network standard

for connecting electrical circuits or devices.
*6 Body control: Electronic control of car interior equip-

ment such as lights or door lock devices.
*7 SILS (Software in the Loop Simulation): Software ver-

ification process intended for the source code which
is automatically generated from a sample model.

References
(1) Akira KANAZAWA, “Extensive Verification of Activation Timing of

In-vehicle Software,” The 172nd Issue of SEI Technical Review, pp106-
111 (2008)

(2) Information-technology Promotion Agency (IPA), Japan, “Investiga-
tion Report on ‘Leading Model Based Development for Embedded
Systems’” (2012) (Japanese only)

(3) Kenichi HORIKAWA, “Evaluation of Automotive Software Standard
‘AUTOSAR’,” The 175th Issue of SEI Technical Review, pp92-97
(2009)

Contributors (The lead author is indicated by an asterisk (*).)

T. KATAOKA*

• Assistant Manager, Power Device R&D De-
partment, Auto Networks Technologies,
Ltd.

I. SAKA
• Western Customers ECU Department,

Electronics Division, Sumitomo Wiring
Systems, Ltd.

K. FURUTO
• Manager, Power Device R&D Department,

Auto Networks Technologies, Ltd.

T. MATSUMOTO
• General Manager, Power Device R&D De-

partment, Auto Networks Technologies,
Ltd.

SEI TECHNICAL REVIEW · NUMBER 77 · OCTOBER 2013 · 83

