AUTOMOTIVE

The Analyzing Method of Root Causes for Software
Problems

Tomomi KATAOKA*, Ken FURUTO and Tatsuji MATSUMOTO

In this technical paper, the authors propose an analyzing method of the root causes for software problems. To prevent
the recurrence of the same problems, it is necessary to logically identify the root causes and take appropriate
measures. Therefore, the authors applied “the 5 whys analysis,” a technique that has been used mainly in the
manufacturing process, to the trouble shooting of software. First, the authors visualized the procedures of software
design by arranging documents illustrating work pieces made in each process to find out the procedures that involve
errors. Next, they prepared many “5 whys” samples related to software development, so that even inexperienced users
can be guided by referring to them. Consequently, the method effectively worked on the software development and

successfully shortened the lead time required for identifying errors and analyzing their causes.

Keywords: software, trouble, analyze method, 5 whys

1. Introduction

The quality of software needs to be secured through a
proper development process, and that development
process must be improved day to day based on the feed-
back of problems that occurred in actual use. If a bug is
found in software, in particular, it is necessary to investigate
the root cause of the bug in order to work out a proper
measure to prevent it from recurring™-®.

On the one hand, “5 whys analysis” is adopted as an
analysis approach to identifying any and all root causes of
problems® systematically. Forming part of total quality
management (TQM), this approach is well-known as an im-
provement method mainly used in the manufacturing in-
dustry™.

Our software development sections have also adopted
the 5 whys analysis approach to analyze the causes of bugs.
However, there was no specific procedure applicable to
software development, and analysis operations depended
on analyzers’ skills and capabilities. In addition, rework fre-
quently occurred because of failure to obtain satisfactory
quality of analysis. As a result, it took time to analyze bugs,
and the lead time from the occurrence of a bug to process
improvement tended to become long.

We developed a procedure for identifying issues relat-
ing to the application of the 5 whys analysis approach to
software development and conducting quality analysis in
an efficient manner. This is a report on the method.

2. Issues in Applying the 5 Whys
Analysis Approach

To develop the procedure for analyzing root causes,
we studied the trend of the past application of the 5 whys
analysis approach in our company. As a result, we identi-
fied the problems in which analyzers were trapped in
applying the 5 whys analysis approach to software develop-
ment. We consequently discovered three major problems

peculiar to software development.

The first problem is a case in which 5 whys analysis re-
sults are used only to track down the mechanism of causing
program bugs (Fig. 1 (a)). In example (a), an “error in the
initialization of the communication driver” is derived as the
factor responsible for the bug event “A specific frame is not
transmitted.” However, this is merely the cause that mani-
fests the bug event. It leads us to a method for correcting
the bug concerned but cannot reveal the factor of the
process that caused the bug to exist in the software, making
it difficult to work out a proper measure to prevent the
recurrence of the bug. In this context, the case shown in
Fig. 1 (a) is not thoroughly analyzed.

The second problem is a case in which the analyzer
performs analysis relying on his/her preconception or im-
pression. In the 5 whys analysis approach, it is important
to sort out objects or events that should be examined and
grasp only facts in advance®. In example in Fig. 1 (b), how-
ever, this fact finding is subjective and vague in that the de-
sign engineer’s feelings and the considerations in the
review are mentioned although there is no positive proof
that can be considered to be a fact. If a problem occurs to
manufacturing equipment in a plant, subjective facts re-
garded as the causes of the problems can be collected from
the manufacturing equipment, materials, or the equip-
ment’s operation records. On the other hand, almost all
processes of software development are carried out by per-
sonnel. Errors in processes are human mistakes in many
cases, and fact finding is likely to depend greatly on the
subjectivity of the personnel involved in the processes.
Facts should, therefore, be verified based on objective pos-
itive proof, such as design documents.

The third and last problem is a case in which the in-
vestigation is not performed in depth although there are
sufficient opportunities to ask why because the downstream
processes focus attention on the error in information input
by the upstream process (Fig. 1 (c)). Certainly, in this case,
the process causing the error is identified by scrutinizing
the “operation processes” of personnel in charge and trac-
ing back “design documents,” or objective positive proof,

SEI TECHNICAL REVIEW - NUMBER 73 - OCTOBER 2011 - 81

from detailed design documents to basic design docu-
ments. However, as a result of focusing the “why” analysis
step on the identification of the process in which the error
penetrated into the product, the indispensable root cause
analysis for investigating “why” the wrong operation was
carried out is not performed. The steps up to the identifi-
cation of the process causing the operation error must be
completed before a full-scale “5 whys analysis” operation
for a deeper root cause analysis.

<Bug event> <Why-1> <Why-2> <Why-3>

ific fi . Transmission An unintended
A specific frame A mismatch between processing to a interrupt permit

is not transmitted the transmission flag channel whose existed when the
under the OO and the transmission initialization was communication
condition. request bit occurred. not completed was driver was
performed. initialized.

(a) Example of analysis in which only the mechanism of causing
a bug is tracked down

<Bug event> <Why-1> <Why-2> <Why-3>

P After reception The design engineer did Although the design
A communication UES interrspted not notice his/her engineer reviewed
check command [> ’ [> misunderstanding of the E> the specification, [>

to the A/ unit Lheff[ecep"o'; . specifications and he/she did not his/her
results in an error. utler was cleare X rstanding of
at 100 ms. y the

(b) Example of analysis in which the design engineer relies on
his/her preconception or impression

<Bug event> <Why-1> <Why-2> <Why-3>

In the coding In the detailed The basic
process, wrong [> ;ﬁzﬁg";ﬁfn' the E> specification [>
A/ was set as number AA dt;es nﬁl:o:\tg\n:

was specified. Ny [e

Software does
not begin to run
under the OO
condition. a port number.

(c) Example of analysis in which only an error in information input
by an upstream process is analyzed

Fig. 1. Examples of past application of 5 whys analysis

3. Development of Problem-Solving Policies

To develop an intended procedure for analyzing root
causes when software bugs are found, we studied the
problem-solving policies presented in Chapter 2. Our
development process is a V-shaped model, and we made
endeavors to contour the problem-solving policies to this
development process. The V-shaped model is a software
development process approach. As shown in Fig. 2, this
development approach is made up of a process for detailing
and implementing requirements, which flows from
upstream to downstream on the left side of the V, and a
process for verifying that the implemented results properly
function as required, which proceeds from downstream to
upstream on the right side of the V.

Software requirement analysis ‘ ‘ Comprehensive software test
v ' :

‘ Basic design ‘ ‘ Integration test ‘
A H

Unit test

Detailed design

Fig. 2. V-shaped model and development process

82 - The Analyzing Method of Root Causes for Software Problems

[Solution 1] To deal with the first problem “insufficient
process-related factor analysis,” we developed
a fact finding step that does not rely on “pro-
gram-related mechanism” investigation by
separately performing it and “operation
process-related error” investigation (Fig. 3
[Step 11)

[Solution 2] To resolve the second problem “insufficient
collection of objective information,” we col-
lected positive proof that does not depend on
subjectivity by listing from registered docu-
ments for the project all documents worked
out from the initial stage to the program cre-
ation stage of the software development
process and investigating which process de-
sign document contains an error.

[Solution 3] To solve the third problem “insufficient
investigation into the root cause in the
process,” we identified the process in the V-
shaped model software development process
in which the error was included in software
by arranging the design documents collected
as described in [Solution 2] in order of
processes and investigating to which process
the design documents were correct and from
which process the design documents con-
tained the error (Fig. 3 [Step 2]).

[Step 2] Process-related factor analysis

Causing factor process

Factor causing the
bug to be included

Direction of analysis
= Tracing back to
upstream processes

Causing factor process

‘Software requirement analysis| @
Detailed design

< Side on which V-shaped
model is produced >
(Leaking side is omitted.)

Process in which
the bug was included

Process +
in which Step 3 Root
the bug was h cause
included tﬁg‘ﬁ:’;gto
be included A
:
ausing factor process
£ Factor causing the |+ of analysis =
8o ’ bug to be included | “.In-depth
Behavior of vehicle 5 § » investigation
ot Direct factor into factor
28
Behavior g8 & Process factor)\
of software s o =
55 K& Management factor
Process in which 25 ~ Root cause
23 P
the bug was included g é » —Organlzatlonal factor

[Step 1] Investigation into
mechanism of occurring bug

[Step 3] 5 whys analysis

Fig. 3. Image of ideal analysis flow

We developed an approach that enables us to spend
more time on analyzing deeper factors behind the occur-
rence of errors, including process rule-related factors,
management-related factors, and the culture of the organ-
ization as shown in Fig. 3 [Step 3]. That effect is accom-
plished by performing the analysis procedure steps
mechanically.

4. Development of a Procedure for Analyzing the
Root Cause When a Software Bug is Found

4-1 Flow of root cause analysis when a bug is found
According to the policies stated in Chapter 3, we de-
veloped a procedure for analyzing the root cause when a
bug is found. Root cause analysis takes place through Steps
1 to 3 below along the “ideal analysis flow” shown in Fig. 3.
(1) [Step 1] Analyzing the mechanism of occurrence
Track down the mechanism causing the bug event con-
cerned and identify the location on the program where it
is included.
(2) [Step 2] Analyzing process-related factors
Trace the design documents along the development
process of the V-shaped model to make clear the possible
processes in which the bug is included (causing factor
processes) and details of the bug (factor causing the bug
to be included).
(3) [Step 3] 5 whys analysis
Investigate factors in depth, and derive the root cause of
the inclusion of the bug.
To reflect the solutions presented in Chapter 3 in the steps
shown above, we prepared Tools (1) to (3) shown in Fig. 4.
Each of the Tools is detailed below.

[(Detection of bug in software)]

[Step 1] Investigation into
mechanism of occurring bug %

\

<Solutions (analysis supporting tools)>
‘ 5 [Tool (1) Fact Finding Sheet by

> V-shaped Model Process
‘«—“{Tool (2) 5 Whys Analysis Sheet (form)]
J‘\[Tool (3) Points of 5 Whys Analysis |

[Step 2] Analyzing
process-related factors

‘ [Step 3] 5 whys analysis

(Planning of measure
to prevent recurrence)

Fig. 4. Procedure for analyzing the root cause
when a bug is found and solutions

We prepared Tool (2) “5 Whys Analysis Sheet” shown
in Fig. 5, which is intended to enable analyzers to perform
operations step by step according to a specified procedure.
This sheet contains entry columns corresponding to a se-
ries of items that will be the outputs of individual steps. It
is also designed to prevent the skipping of steps and enable
personnel other than the analyzer to objectively check
analysis results by filling in these columns.

J1 J2 J3 Why1 Why2 Why3
Bug event Bug event Process in Factor causing "
Behavior of | | Behavior of | |whichthe bug| |the bug tobe géf:rt]f:;t;?ss
vehicle software was included | |included
(Onsource code)| | Causing
] i r~| factor ™~ e =~
process

Fig. 5. 5 Whys Analysis Sheet (excerpted)

4-2 Fact finding along the development process of the V-
shaped model
In this section, we describe a procedure for accurately
grasping when the bug was included, narrowing down the
“causing factor processes,” and identifying the “factor caus-
ing the bug to be included.”

Step (2): Configuration L _, _| step (3): Fact/Problem } _____
control information

o =
Product configuration | Record at the time E £
! . A act/Problem Sa
of review é 8
No|Process « Folder name « Folder name ||| * Locating points of change | || Problem to 35
name « File name « File name - Grasping facts ideal analysis S
T
Software Il . pocument No. || - Document No. : -
oure Date of preparation ||| - Date of Step (4): Causing factor process
| [analysis h T
Jupdate " i
N)) Basic design document
2 gaSJC « Personiin charge ||| + Form of review i when cor?dnmn a0, load (Correct)
esign efc. ||| + Review record |8 = OFF — ON.”
. etc. ||; Detailed design document [(Error) Although
3 |Detailed “When condition a = 0, set | condition a should be 1, OCEW
Cesion TatportB’ 7 awassetald .
) On source code (Error) Although
4 |Implementation | L “When ccnd\t})n’a <1, set| condition a should be 1,
| L2t atport B2 awas setat 0.
- v
5 |Unit test Step (1): Transcribe from the results of i
analysis of the ism of B ; o Vi o
: ofbination test specificationt: (Error) When condition a
6 {gt;granon {There is no.test terirélating | = O, there was no test item
o condiiona. concerning B = OFF — ON,
I ——

o ; I
7 | software test (Step (6): To 5 whys analysis

Step (5): Flowing out factor process

Fig. 6. Fact Finding Sheet by V-shaped Model Process

What is important in this procedure is to correctly in-
vestigate any and all facts. We prepared Tool (1) “Fact
Finding Sheet by V-shaped Model Process” shown in Fig. 6
to perform this investigation. This sheet arranges the
names of development processes and investigation items
in the form of a matrix, so that even inexperienced analyz-
ers can investigate all necessary items without a waste of
time and efforts simply by filling in the columns step by
step. The specific investigation procedure using the Fact
Finding Sheet by V-shaped Model Process is shown below.
(1) Based on the investigation into the mechanism of bug

occurrence in [Step 1] in Fig. 4, enter the location

where the bug was included and details in the

Fact/Problem column for the coding process.

(2) By making reference to registered documents for the
project, prepare products of each process when the
bug concerned was included, and enter recorded in-
formation at the time of a review.

(3) By making reference to the products collected in (2)
above and based on positive proof, check the details
of the bug entered in (1) and whether there are re-
lated facts and errors, and enter them in the Fact/
Problem column.

(4) Trace the upstream processes one by one from the
process in which the bug entered in (1) was included
by making reference to the information entered in the

SEI TECHNICAL REVIEW - NUMBER 73 - OCTOBER 2011 - 83

Fact/Problem column. If the upstream processes up
to the preceding process are correct and there is an
error in the present process, determine and identify
the present process as the causing factor process. In
the example shown in Fig. 6, the error “condition a =
0”is included in the “detailed design” process judging
from the information entered in the Fact/Problem
column. However, since the preceding upstream
“basic design” process is correct, the “detailed design”
process is considered to be the causing factor process.

(5) Basically, derive the outflowing factor process assum-
ing that the upstream process preceding the verifica-
tion process (on the right side of the V) corresponding
on the V-shaped model to the causing factor process
is the outflowing factor process. In the example shown
in Fig. 6, the upstream “Integration test” process pre-
ceding the “unit test” process, which corresponds to
the “detailed design” process identified as the causing
factor process in (4), is considered to be the outflow-
ing factor process. In the V-shaped model, this concept
is based on the principle that the bug should be de-
tected in the upstream process preceding the outflow-
ing (verification) process corresponding to the
causing (detailed/implementation) process in which
the bug was included. We prepared the flow of
processes and that of products shown in Fig. 7 so that
even analyzers unfamiliar to this concept can identify
the error according to the procedure. They help de-
rive the outflowing factor process from the causing fac-
tor process.

(6) Set the information entered in the “Problem to ideal
analysis” column in Why 1 of 5 whys analysis described
in the section that follows.

[]:Process name (Enter the number of the Fact
Finding Sheet by V-shaped Model Process as well.)

("):Product name (representative one)

-------------- » : Flow of processes

——— : Flow of products

Software requirement S Comprehensive software Y Comprehensive software
analysis (No. 1) "4l testdesign (No. 7) < test (No. 7)

Software requirement Comprehensive software Comprehensive software A
specification test specification test result report

[Basic design (No. 2) |+++#] Integration test design (No. 6) |-+~ Integration test (No. 6)
: [Basm design documem)—f (Integratlon test specmcatlon)—/'(Integraﬂon test result reportj‘

Unittest (No.5)
Unlt test result report |4
Coding (No. 4)

(Program)

\Detaned design (No. 3)\ f\Unn test design (No. 5)\
(Detalled design document)—f Unlt test specntlcatlon

»

Fig. 7. Flows of processes and products of V-shaped model

With the procedure we have described thus far, you
can standardize specific operations in the process in which
bugs are included, which have not been subjected to in-
depth fact finding and have relied on analyzers’ intuition,
and objectively judge analysis results with the aid of positive
proof.

84 - The Analyzing Method of Root Causes for Software Problems

4-3 Performing 5 whys analysis

Next, perform 5 whys analysis using the 5 Whys Analy-
sis Sheet shown in Fig. 5 with Why 1 of the causing and out-
flowing factor processes derived in 4-2 as the starting point.

To derive the root cause, all factors must be investi-
gated in depth in a regular, orderly manner. However, 5
whys analysis has been applied to limited cases in our soft-
ware development sections, and well-established know-how
has not been available. There are pieces of general litera-
ture describing know-how about 5 whys analysis, but many
of them address samples targeted at problems relating to
manufacturing equipment and are not of much help in an-
alyzing software bugs.

To enable even inexperienced analyzers to conduct
quality analysis, we compiled errors likely to occur in analy-
sis applied to software development into Tool (3) “Points
of 5 whys Analysis” as shown in Table 1, with samples rep-
resenting experience in software added, by making refer-
ence to “T'en Rules on the Performance of 5 Whys Analysis”
proposed in Literature (5).

Table 1. Points of 5 whys analysis (example)

Example in software development

No. Point (x: bad example, O: good example)
(x) The system design of the source project
contained the bug.
— The factor causing the bug is unknown
Analyze because it was included in the source
latent bugs in project in the process of its development.
B4 the source (O) The system design of the source project

project from the
viewpoint of the
present project.

contained the bug.

Although necessary products were not
available at the time of the carry-over of
the system design of the source project,
difference verification was not conducted
when applying it to the present project.

B8

Analyze the bug
from the view-
point of the
mechanism, not
as a personal

The person in charge was poor in skill
and could not perform in-depth analysis.
Behavior when the error occurred was
not thoroughly analyzed from the view-
point of vehicle behavior.

The person in charge was assigned as

matter. design leader although he/she did not

receive necessary education.

5. Application to the Development Process and
the Effect of the Introduction of the Procedure

In July 2010, the analysis procedure described in Chap-
ter 4 was finally adopted as a standard rule of the mass pro-
duction development department after trial application.

Under the guidance and supervision of the software
quality assurance (SQA) department, personnel in charge
of respective development projects began to apply the pro-
cedure to analyze bugs.

According to data on software quality activities com-
piled by the SQA department at the end of the business
year 2010, the lead time from the occurrence of a bug to
the completion of root cause analysis was reduced by 40%
from the 2009 level. The total lead time from the occur-
rence of a bug to process improvement was shortened to

approximately one-third of the 2009 level, and measures
to prevent the recurrence of problems could be finalized
in a shorter period of time.

To analyze the contribution of each approach de-
scribed herein to software quality improvement, we con-
ducted a questionnaire survey to the SQA department and
rated the Tool (1) “Fact Finding Sheet by V-shaped Model
Process,” Tool (2) “6 Whys Analysis Sheet,” and Tool (3)
“Points of 5 Whys Analysis” in terms of “reduction in lead
time” and “improvement in analysis quality.” The results of
the survey are shown in Fig. 8. We also discussed the effect
of the introduction of the procedure, as well as the results
of hearings from the SQA department separately held. The
results of the discussion are described below.

“(1) Fact Finding Sheet by V-shaped Model Process”
used for “analyzing process-related factors” in [Step 2] in
4-1 helps identify the process in which a bug was included
based on objective fact verification. This proves that the
Fact Finding Sheet enables analyzers to accurately grasp
facts and is also effective in improving analysis quality and
reducing the lead time (score: 3.4 points in both items).
In addition, we received the following comment: “Al-
though we have to take time to complete the Fact Finding
Sheet, reanalysis due to insufficient fact verification can be
reduced and, as a result, it helps reduce the lead time.”
This indicates that the improved quality of fact finding
makes a contribution to activities to promote measures
against the sources of problems.

However, we could not determine whether “(2) 5
Whys Analysis Sheet” and “(3) Points of 5 Whys Analysis”
used in “5 whys analysis” in [Step 3] in 4-1 are effective in
improving analysis quality at present although the former
has some effect of reducing the lead time. This is probably
because analyzers’ experience and familiarity with 5 whys
analysis greatly affect 5 whys analysis quality. For this rea-
son, we consider it important to make good use of Tool (3)
as an educational material and collect and organize past
cases and further accumulate and utilize analysis know-how
tailored to our software development.

01 2 3 4

Effectiveness (reduction in lead time) Bad so0d
ad4— —» Goo!

(1) Fact Finding Sheet by V-shaped Model Process 3.4
-Used for pro lated factors] :

(2) 5 Whys Analysis Sheet 3.0

-Used for [5 whys analysis]
2.0

(3) Points of 5 Whys Analysis
0.0 0.5 1.0 15 20 25 3.0 35 4.0

- Used for [5 whys analysis]

. 01 2 3 4
Effectiveness (improvement in analysis quality) Bad " SM000d
(1) Fact Finding Sheet by V-shaped Model Process 3.4 |

-Used for proc lated factors] .
(2) 5 Whys Analysis Sheet 26 ‘

-Used for [5 whys analysis]

(3) Points of 5 Whys Analysis
-Used for [5 whys analysis]

00 05 10 15 20 25 30 35 40

[Surveyed personnel] SQA selected members from the mass production
development department

[Survey method] Selective method

[Period of survey] March 15 to 17, 2011

[Number of respondents] 5

[Counting method] The average points of the answers from the respondents are
calculated based on the following points:

4 points: very good, 3 points: good, 2 points: average, 1 point: not so good, 0 points: bad

Fig. 8. Results of questionnaire to the SQA department

6. Conclusion

This paper described the 5 whys analysis procedure we
developed for the purpose of efficiently conducting
process improvement activities for automotive software that
is required to offer a high level of quality, as well as the
effect of its introduction.

We consider that our developed procedure is applica-
ble not only to automotive software development adopting
the V-shaped model but also widely to analysis of the root
causes of problems that occur in the development process.

There is still plenty of room for improvement in analysis
quality. To further improve analysis quality, we are deter-
mined to promote the use of the tools for education and
the accumulation and use of analysis cases peculiar to our
development process and intended products as know-how
for 5 whys analysis.

References

(1) Software Engineering Research Center: “Key Practice of Capability
Maturity Model, Ver. 1.1,” CMU/SEI-93-TR-25, Carnegie Mellon
University (1993).

(2) Satoshi Terakubo et al., “Construction of CMM Level 3 Software
Development Process for Automotive ECUs,” SEI Technical Review
No. 166, pp. 45-50.

(3) Hitoshi Ogura: ‘Introduction to Thorough Use of 5 Whys Analysis —
Workshop Improvement Beginning from “Why?”” JIPM Solution
(1997).

(4) Isao Hayakawa et al., Software Quality Symposium 2008, ‘Applying
“ask why five times” method on software development,” pp. 185-194.

(5) Hitoshi Ogura: “Make Full Use of 5 Whys Analysis! Complete Drill
for Capturing 5 Whys Analysis,” JIPM Solution (2002).

* CMM is a registered trademark of Carnegie Mellon University.
A A A A AAAAAAAANANANANANANANANANANNANANANAAANS

Contributors (The lead author is indicated by an asterisk (*).)

T. KATAOKA*
¢ Software Development Center, AutoNet-
works Technologies, Ltd.
Engaged in the development of in-vehicle
software and establishment of its R&D
environment.

K. FURUTO

® Manager, Software Development Center, AutoNetworks
Technologies, Ltd.

T. MATSUMOTO

® General Manager, Software Development Center,
AutoNetworks Technologies, Ltd.

SEI TECHNICAL REVIEW - NUMBER 73 - OCTOBER 2011 - 85

