

酸化物半導体IGZO デバイスプロセスへの ホウ素イオン注入技術の応用検討

Investigation of Boron Implantation Technique Application for Oxide Semiconductor IGZO Device Processing

靖典

酒井 敏彦 Toshihiko Sakai 安田 圭佑 Keisuke Yasuta

Yasunori Andoh

立道 潤一 Junichi Tatemichi

酸化物半導体である In-Ga-Zn-O (IGZO)を用いた電子デバイスは、次世代フラットパネルディスプレイへの応用が期待されている。 日新イオン機器㈱および日新電機㈱は IGZO 薄膜へのイオン注入技術の応用を目的とし、イオン注入において一般的に用いられるホ ウ素イオンB⁺を IGZO 薄膜へ注入し、光学的・電気的特性を分析・評価した。その結果、B⁺の注入技術が IGZO 電子デバイス、特 に薄膜トランジスタ(TFT)のソース・ドレイン領域の抵抗値低減において有効であることを示した。

安東

Electronic devices using oxide semiconductor In-Ga-Zn-O (IGZO) are attracting attention as next-generation flat panel displays. In order to apply ion implantation technique to IGZO films, Nissin Ion Equipment Co., Ltd. and Nisshin Electric Co., Ltd. performed conventional ion B⁺ implantation in IGZO films and investigated their optical or electrical properties. The result shows that controlling the resistance of IGZO films by B⁺ implantation is useful for the IGZO electronic devices, especially for reducing the resistance in the source and drain region of the IGZO thin-film transistors.

キーワード:フラットパネルディスプレイ(FPD)、酸化物半導体、IGZO、ホウ素、イオン注入

1. 緒 言

次世代のフラットパネルディスプレイ (FPD) 分野に 求められるエレクトロニクス技術においては、安価、透明 性、柔軟性、および大面積化を実現可能な技術が求められ ており、これらの実現のためには、プロセスの簡易化と低 温化、透明材料、および柔軟性基板の開発が必要である。 現在、次世代FPDへの使用が期待されているインジウム (In)、ガリウム (Ga)、亜鉛 (Zn)の各酸化物から成る半 導体 (IGZO) は、高集積回路、フレキシブルディスプレ イ、透明ディスプレイ、低消費電力ディスプレイが実現可 能な特性を有し、次世代FPDへの応用を目的として、広く 研究・開発が進められている。

近年、真空中プロセスで作製されたIGZOを用いた薄膜 トランジスタ(以下、TFT: Thin Film Transistor)は、高 速動作、低消費電力、高耐圧が実現されている^{(1)、(2)}。さら に、IGZO TFTを高性能化するため、プラズマ照射⁽³⁾、エ キシマレーザー照射⁽⁴⁾、およびイオン注入^{(5)、(6)}によるソー スおよびドレイン領域の低抵抗化が検討されており、その 有効性が報告されている。これらの技術の中で、イオン注 入法は微細化・集積化・生産性において優れた長所を有す るが、低抵抗化のメカニズム解明については充分になされ ていない。その理由としては、低抵抗化の挙動が単純に原 子・分子質量やイオン価数に依存せず、簡単でないためで ある。日新イオン機器㈱のディスプレイ用大型イオン注入 装置において、注入可能なイオン種は多く、様々な必要条 件に応じたプロセス応用の可能性を有しており、その応用 範囲をさらに拡大させるため、イオン注入によるIGZO薄 膜のシート抵抗値制御技術を検討している。

本稿では、既存シリコンプロセスのイオン注入技術において、従来用いられているホウ素イオン(B⁺)に着目し、 ガラス基板上に成膜されたIGZO薄膜へのイオン注入および分析を行った研究結果を報告する。

2. イオン注入の要素技術検討

2-1 イオン注入IGZO薄膜のシート抵抗値評価

透明ガラス基板 (厚み0.5 mm)上にプラズマスパッ タ装置⁽⁷⁾を用いて堆積された厚さ50 nm程度、シート抵 抗値 $R_s = 10^{12} \Omega$ /sq.程度のIGZO薄膜に対し、イオン 注入装置⁽⁸⁾を用い、平均注入深さ15 nm程度、注入量 1×10¹⁵ cm⁻²でさまざまなイオン種を注入した後、室温の ホール測定により R_s 評価を行った。図1に未注入IGZO薄 膜および各イオン種注入後のIGZO薄膜の R_s 測定結果を 示す。

本結果から、未注入のIGZO薄膜と比較して、注入後の IGZO薄膜は、注入したイオン種によらず、 R_s が低下し、 特にB⁺, C⁺, Ne⁺, Ar⁺の注入が R_s の低減に有効であること がわかった^{(9)~(12)}。このうち希ガスイオンであるNe⁺, Ar⁺ は、自身がドナーにもアクセプターにもならず、注入によ り生じるIGZO薄膜中の酸素欠損Voが抵抗値を低減させ ることがわかっている^{(11)、(12)}。一方、B⁺あるいはC⁺注入 結果について、原子質量や価数は他のイオン種と中間の値 であり、その低抵抗化のメカニズムは単純ではないことがわかる。

2-2 B⁺注入IGZO薄膜の電子輸送特性評価

IGZO 薄膜の低抵抗化に B⁺注入が有効であることがわか り、深さおよびIGZO R_sの制御技術を確立するため、IGZO (50 nm) / ガラス基板構造に対し、イオンエネルギーEion が15-30 keVの範囲で注入を行った。さらに、注入され たBの深さ方向密度プロファイルを得るため、シミュレー ター (TRIM: Transport of Ions in Matter⁽¹³⁾) による計 算および二次イオン質量分析(SIMS)を行った。図2(a) に得られたIGZO (50 nm) / ガラス基板中のB密度の深 さプロファイルを示す。IGZO 膜中において TRIMと SIMS のプロファイルは整合している。なお、IGZO/ガラス界 面近傍より深い領域においては TRIM と SIMS より見積も られたB密度プロファイルが整合していないが、これはガ ラス基板に含有されるBのバックグラウンドによるもので ある。図2 (b) にIGZO薄膜中のB密度プロファイルより SIMSとTRIMにより見積もられたBに対するIGZOの阻止 能(IGZO薄膜を進むB⁺が原子核あるいは電子との相互作 用によって失うEimの程度を表す量である核的阻止能およ び電子的阻止能)を示す。

一方、B⁺注入によるIGZO R_s 低減において、 E_{ion} の最適 化を目的とし、 E_{ion} は5-80 keVの範囲、注入量は1×10¹⁵ cm⁻²一定とし、注入後、 R_s を測定した。さらに、後工程 の熱処理効果も考慮し、B⁺注入後にN₂雰囲気あるいは大気 中で250℃,1 hourの熱処理を行ったサンプルも用意し、 R_s を測定した。図3にHall測定により得られたIGZO R_s の E_{ion} 依存性を示す。10-20 keVの領域では、 E_{ion} の増大に伴 い、 R_s が減少する。これは E_{ion} の増大に伴い、IGZO薄膜 表面から低抵抗化される領域が増大することに起因してい る。一方、20-80 keVの領域では、 E_{ion} の増大に伴い、 R_s

図2 IGZO (50 nm) / ガラス構造に対する、各イオンエネルギー におけるB密度の深さ方向プロファイル、および測定とシミュ レーションを組合せて見積もられたIGZOのB阻止能(発表 論文Fig.1 (©ITE, SID 2021)の和訳)

図3 IGZO (50 nm) / ガラス構造へのB⁺注入量を1×10¹⁵ cm⁻² に揃えつつ、注入直後、注入後N₂雰囲気熱処理、および大 気中熱処理した場合のシート抵抗値 R₅のイオンエネルギー Eion依存性(発表論文Fig.2 (©ITE, SID 2021)の和訳) が増大する。これは、図2(a)に示すようにIGZO薄膜を買 通するBが増え、IGZO膜中に残るB量が減少することに 起因していると考えられる。さらに、熱処理後について、 抵抗値の増減挙動が大きくなることがわかった。これは、 IGZO薄膜中のBが熱処理によって、何らかの化学反応を 引き起こしていることを示唆している。さらに、熱処理時 の雰囲気によっても、R。値に違いがあった。これは大気中 熱処理の場合、H2OやO2が酸化剤として働き、注入によっ て増大したIGZO薄膜中のVoが、熱処理により減少してい る可能性が示唆される。以上の結果は、絶縁膜/IGZO構造 において、プラズマ処理では絶縁膜を除去した後、IGZO 薄膜を低抵抗化する必要がある場合と比較して、イオン注 入では大気や酸化剤となる分子に触れることなく、絶縁膜 越しにIGZO薄膜を低抵抗化可能であることを示す。これ はイオン注入技術のIGZOデバイスプロセス応用への大き な有用性を示す結果の一つである。

注入されたB⁺の挙動をより詳細に調べるため、IGZO薄 膜の電子輸送特性の面直方向深さ依存性を分析した。図4 に分析プロセスフローを示す。厚さ180 nmのIGZO膜をガ ラス基板上に成膜し、Eion = 50 keV, 注入量1×10¹⁵ cm⁻² のB⁺注入を行った後、IGZOパターニングおよびオーミッ ク電極形成を行った。その後、分光エリプソメトリによる IGZO膜厚d評価、Hall測定、およびウェットエッチング を繰り返し行い、電子輸送特性を評価した。図5に得られ た R_s 、Hall移動度 μ_{meas} およびシートキャリア密度 n_{meas} の IGZOエッチング深さx依存性を示す。ここでxについて、 IGZO成膜時の厚さ (180 nm) をtとするとx = t - dの関係 から見積もられる。R_sはx < 150 nm において緩やかに増 加し、x > 150 nm において急激に増加することがわかっ た。さらに、 μ_{meas} および n_{meas} はx < 150 nm において緩 やかに減少し、x > 150 nm において急激に減少すること がわかった。以上の結果はIGZO薄膜のx=0-150 nmの 領域で高密度電子が生成されていることを示唆している。

以上の結果では、エッチングされ残ったIGZO膜の平均 化された電子輸送特性しかわからないため、深さ方向の情 報より定量的に評価するため、並列コンダクタンスモデル を考え、IGZO薄膜の深さ方向を関数とする局所的電子密 度n_iおよび局所的Hall移動度µ_iプロファイルを分析する。

図4 B⁺注入されたIGZO薄膜の電子輸送特性の深さ方向依存性 の分析試験プロセスフロー

図6に並列コンダクタンスモデル図を示す。このモデルで はHall測定においてIGZO薄膜を流れる電子の導電率が、 各層の並列接続の合成で記述される。

さらに、Hall測定において弱磁場近似(移動度µと磁束

(発表論文 Fig.4 (©ITE, SID 2021)の和訳)

 図6 IGZO薄膜の深さ方向を関数とする局所的電子密度n_iおよびHall移動度µ_iの並列コンダクタンスモデル図(発表論文 Fig.5 (©ITE, SID 2021)の和訳)

密度Bの積 µB << 1) が成り立つ場合、次の連立方程式が 成立する。

$$\sigma_{\text{meas}} \simeq \sum_{j} \sigma_{j}, (\sigma_{\text{meas}} = n_{\text{meas}} \cdot \mu_{\text{meas}}, \sigma_{j} = n_{j} \cdot \mu_{j}) \quad \dots \quad (1)$$

 $\sigma_{\rm meas} \cdot \mu_{\rm meas}^2 \simeq \sum_j \sigma_j \cdot \mu_j^2$ (2)

ここで、nmeasは測定されたキャリア密度、µmeasは測定さ れたHall移動度である。なお、本Hall測定において、B~ 0.35 Teslaであり、IGZOは μ ~10 cm²/Vsのため、 μ B ~0.00035であり、弱磁場近似µB << 1が成立する。図5 に示すHall測定結果、および(1)、(2)の連立方程式を用 い、IGZO薄膜の深さ方向を関数とするn_iプロファイルを 図7 (a) に示す。加えて、図2 (b) に示す2つの阻止能を用 いTRIM計算したIGZO膜中のB密度プロファイルおよび SIMSプロファイルも示す。さらに、IGZO薄膜を構成する 各原子の結合エネルギーを一般的な値~3 eVとし、TRIM により計算されたVo密度プロファイルも併せて示す。ま ず、IGZO膜中のB密度プロファイルについて、TRIM計算 結果はSIMSと良く一致している。さらに、n_i、Vo、およ びBの各密度プロファイルの比較により、IGZO表面(深 さ0 nm) からの深さ< 100 nm において、電子を生成す るVoのプロファイルはniプロファイルとは整合性が取れ るが、深さ~150 nm近傍にピークを有する Voプロファ イルとは大きく異なる。しかしながら、B密度プロファイ ルは~150 nm 近傍にピークを有し、 Voと整合性がある。 一方、図7 (b) に連立方程式 (1)、(2) を用いて計算され $t = \mu_i \mathcal{T}$ ロファイルを示す。深さ0-150 nm まで μ_i は10-20 cm²/Vsである。以上より、BそのものがIGZO低抵抗化 に寄与している可能性が示唆された。

2-3 B注入IGZOのX線光電子分光評価

IGZO薄膜中のBの挙動を別の観点から分析するため、 B⁺注入IGZO薄膜の R_s 低減、および分子の結合状態を評価 した。具体的には、図3に示す最も R_s の低い条件 $E_{ion} = 15$ keVおよび注入量1×10¹⁵ cm⁻²の注入直後とN₂熱処理後 のIGZO薄膜をX線光電子分光法(XPS)で分析した。比 較のため、未注入および未注入かつN₂熱処理後のIGZO薄

図7 IGZO薄膜の深さ方向を関数とする電子、Vo、およびB密度 プロファイルおよびHall移動度プロファイル(発表論文 Fig.6 (©ITE, SID 2021)の和訳)

膜も併せて評価した。用いたX線はAlKα(1286.6 eV) である。図8(a)に得られたワイドスペクトルを示す。得 られた元素スペクトルは全て同定でき、IGZOを構成する 元素スペクトル以外では、注入されたBに関係するスペク トル、大気中で表面に付着した炭素Cに関係するスペクト ル以外の元素由来のスペクトルは見られなかった。なお、 XPSの測定中の試料帯電による束縛エネルギーのシフト補 正は図8(a)に示すC1s(284.6 eV)にて行った。

図8(b)に得られたB1sスペクトルを示す。未注入IGZO については、熱処理の有無に関わらず、Bに関するピーク は出てこなかった。一方、B注入IGZOについては、熱処 理の有無の両者について、192 eV付近にピークが観測さ れた。ここで、

図8 IGZO薄膜のX線光電子分光のワイドスペクトルおよびB1s スペクトル(発表論文Fig.3 (©ITE, SID 2021)の和訳)

- BがBと結合(B-B結合)した場合の束縛エネルギーは188 eV⁽¹⁴⁾であり、得られた束縛エネルギーはそれよりも大きいことがわかる。
- (2) 電子を引き付ける度合いを示す電気陰性度を比較 するとZn (1.65) < In (1.78) < Ga (1.81) < B (2.04) < O (3.44) である。

の2点を考慮すると、注入されたBは、Bよりも電気陰性度 の大きな元素との結合の影響を受けている。すなわち、B はOとの結合(B-O結合)が支配的であると考えられる。 よって、電子輸送特性評価結果とXPS結果を合わせること で、B注入によりIGZOは注入中に生成されるVoのみなら ず、BそのものがIGZO薄膜の抵抗値を低減していること が示唆された。なお、熱処理の有無でB1sに有意差が見ら れないのは、測定ノイズに両者の差が埋もれてしまったこ と、測定中のX線により与えられるエネルギーが熱処理の 差を無くしてしまったなどの様々な可能性がある。以上よ り、図9にIGZO薄膜に注入されたBによりR。が低減する モデル図を示す。注入B⁺がスパッタリングによりVoを生 成しつつ、さらにIGZO薄膜中に留まったBがOと結合す ることで金属原子 (In, Ga, Zn)-O 結合を切り、未結合手を 発生させる。未結合手の電子はその場に局在せず、キャリ アとして機能することにより、IGZO Rsが低減すると考え られる。

M: 金属原子 (In or Ga or Zn)

図9 B+注入によるIGZO抵抗値の低減モデル図

3. 結 言

以上、FPD技術におけるIGZOデバイス、特にIGZO TFTへのイオン注入装置の応用を目的とし、B⁺注入による IGZO R_s 制御技術の検討結果を報告した。Hall測定より好 適なB⁺注入条件を分析・評価した。さらにXPS測定より、 注入後にVoのみならず、Bそのものの寄与により R_s の低 減を実現できることを明らかにした。

上記の知見は、イオン注入法がIGZO薄膜デバイスプロ セスにおいて有用であることを示すとともに、さらなる性 能改善の可能性を有するため、今後も検討を続けていく所 存である。

- (1) K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature **432**, 488 (2004)
- (2) T. Kamiya, K. Nomura and H. Hosono, J. Disp. Technol. 5, 273 (2009)
- (3) H. Jeong, B. Lee, Y. Lee, J. Lee, M. Yang, I. Kang, M. Mativenga and J. Jang, Appl. Phys. Lett. **104**, 022115 (2014)
- (4) M. Nakata, H. Tsuji, Y. Fujisaki, H. Sato, Y. Nakajima, T. Takei, T. Yamamoto and T. Kurita, Appl. Phys. Lett. **103**, 142111 (2013)
- (5) R. Chowdhurya, M. Kabirb, R. Manleyc and K. Hirschman, ECS Transactions 92, 135 (2019)
- (6) L. Qian, W. Tang and P. Laia, ECS Solid State Lett. 3, 87 (2014)
- (7) D. Matsuo, R. Miyanaga, T. Ikeda, S. Kishida, Y. Setoguchi, Y. Andoh, M. N. Fujii and Y. Uraoka, Proc. the **25th** IDW, 560 (2018)
- (8) S. Dohi, H. Kai, T. Nagao, T. Matsumoto, M. Onoda, K Nakao, Y. Inouchi, J. Tatemichi and M. Nukayama, The Nissin Electric Review 62, 17 (2017)
- (9) T. Ui, R. Fujimoto, K. Yasuta, D. Matsuo, T. Sakai, Y. Setoguchi, E. Takahashi, Y. Andoh and J. Tatemichi, Proc. the **27th** IDW, 315 (2020)
- (10) K. Yasuta, T. Ui, T. Nagao, D. Matsuo, T. Sakai, Y. Setoguchi, E. Takahashi, Y. Andoh and J. Tatemichi, Proc. the 28th IDW, 956 (2021)
- (11) T. Ui, R. Fujimoto, T. Sakai, D. Matsuo, Y. Setoguchi, Y. Andoh and J. Tatemichi, Proc. the **27th** AM-FPD, 115 (2020)
- (12) K. Yasuta, T. Ui, T. Ikeda, D. Matsuo, T. Sakai, S. Dohi, Y. Setoguchi, E. Takahashi, Y. Andoh and J. Tatemichi, Proc. the **28th** AM-FPD, 77 (2021)
- (13) J. Ziegler and J. Biersack, Stopping Power and Range of Ion in Matter (2008)
- (14) A. Thompson, and D. Vaughan, X-RAY DATA BOOKLET (2009)
- -----

執 筆 者一

安田 圭佐 二日新イオン機器(株)	

松尾	大輔	: 日新電機㈱ 主任 工学博士 AM-FPD '17 ECS Japan Section Young Researcher Award, IDW '17 Outstanding Poster Paper Award
酒井	敏彦	: 日新電機㈱ 主査 IDW '18 Outstanding Poster Paper Award
安東	靖典	 : 日新電機(株) 技監 特別フェロー 工学博士
立道	潤一	: 日新イオン機器㈱ 技術主幹

*主執筆者

本論文は、IDW '21で発表した内容 (Proceedings of The International Display Workshops vol. **28**, 2021, FLX5/FMC6-3, pp. 956-959.) に 基づき作製した論文である:以下、発表論文。発表論文より引用した部分 は Copyright が The Institute of Image Information and Television Engineers and The Society for Information Displayに帰属し、©ITE, SID 2021と記述する。