

800Gbit/s対応高光出力・高受光感度 IC-TROSA

High-Optical-Output-Power and High-Responsivity Integrated Coherent Transmit-Receive Optical Sub-Assembly for 800 Gbit/s Transmission

三澤太-Taichi Misawa 武智 勝 Masaru Takechi

坂野 英一 Eiichi Banno Yasutaka Mizuno

泰孝

原 弘 Hiroshi Hara

水野

デジタルコヒーレント光通信技術は、幹線系・メトロ系の長距離伝送システムだけでなく、データセンタネットワークにも展開され ようとしている。そのため小型光トランシーバに搭載可能で、高速・大容量伝送を実現するコヒーレントモジュールへの要求が高まっ ており、2019年8月に業界標準化団体 OIF にて送受一体型の小型コヒーレントモジュールである IC-TROSA 規格が制定された。我々 は、本規格に準拠した波長可変光源内蔵の800Gbit/s 伝送用 IC-TROSA type2モジュールの開発を行ったので、その成果を報告する。

A digital coherent optical transmission technology has been deployed in not only long-haul and metro networks but also data center networks. Therefore, there is an increasing demand for a coherent module that can be incorporated in small-sized optical transceivers and realize high-speed and high-capacity transmission. Considering these demands, the Optical Internetworking Forum standardized the integrated coherent transmit-receive optical sub-assembly (IC-TROSA) module in August 2019. This paper presents an IC-TROSA type-2 module that integrates a tunable laser for 800 Gbit/s applications.

キーワード:コヒーレント光通信、IC-TROSA、波長可変光源、変調素子、受光素子

1. 緒 言

SNSの拡大や、近年のテレワークの浸透、さらには5G ネットワークの開始に伴うコンテンツの拡大により、イン ターネットトラフィックの顕著な増加が続いている。この 急増するデータ通信量に対して、光ファイバ通信技術で如 何に対応していくかが課題となっている。

デジタルコヒーレント光通信技術は、光の強度状態に加 えて位相状態も情報として伝送することで、限られた帯域 により多くの情報を載せて大容量化を可能とするととも に、送信側と受信側の双方でデジタル信号処理を行い、光 ファイバ伝送に伴う信号品質の劣化を補うことで、長距離 伝送を実現している。これまで、大都市間を結ぶ幹線系、 都市間を結ぶメトロ系などの長距離間で適用され、伝送速 度400Gbit/sのコヒーレント伝送システムが市場に導入さ れている。近年では、先述の市場要求に応えるべく、伝送 速度800Gbit/sに対応するコヒーレント伝送方式の標準化 が検討されるとともに、より伝送距離の短いデータセンタ 間への導入も進められている。

データセンタ用途では、伝送速度の高速化だけでなく、 コヒーレントモジュールの小型化も重要となる。そこで、 業界標準化団体のOIF^{*1}では、IC-TROSA^{*2}と呼ばれる光 モジュール規格を策定し、そのうちIC-TROSA type-2⁽¹⁾ は、小型光トランシーバのQSFP-DD^{*3 (2)}に搭載可能な W15.1mm×L30.0mm×H6.5mmのサイズに、3つの主 要な光アクティブ素子である、波長可変光源、変調素子、 そして受光素子と、さらにそれらを制御するICを搭載した コヒーレントモジュールとなっている。

当社はこれまで、InP系材料を使用した、高出力の波長 可変光源モジュール、400Gbit/s対応の光受信器モジュー ル^{(3)、(4)}や光変調器モジュールを開発しており、良好な特性 を得ている。今回、800Gbit/sに対応する高速化と、この 3つの機能を一つのパッケージに集約し、IC-TROSA type2 規格に準拠するコヒーレントモジュールを開発したので、 その結果を報告する。

2. IC-TROSAの構成

今回開発したIC-TROSAの外観を**写真1**に示す。小型部 品の採用と高集積実装技術の適用により、パッケージサイ ズはW14.1mm×L27.5mm×H3.8mmと、小型低背化 を実現した。さらに、ICを搭載したコントロールボードを パッケージ上部に配置し、フレキシブルプリントサーキッ ト (FPC)を介して接続することで、モジュールの総厚を 6.2mmとし、IC-TROSA Type2規格に準拠する設計とし た。コントロールボードには、波長可変光源、変調素子、 そして受光素子への電源供給と、それらを監視・制御する 各ICが搭載されている。図1に、QSFP-DDに搭載した時の モデル図を示す。一般的な光トランシーバの放熱設計は、 パッケージを上下からトランシーバ節体で挟み込み、パッ ケージの放熱面をトランシーバの放熱面に当てつけるよう

写真1 IC-TROSA とパッケージ外観

図1 QSFP-DDへのIC-TROSA 搭載図

な設計を行うが、IC-TROSAはパッケージにコントロール ボードが搭載されるため、筐体からの加圧によりコント ロールボード上のICが破損する可能性がある。その対策と して、パッケージの4隅に金属ポストを配置し、加圧下で もICがパッケージに接触せず、振動・衝撃に耐える高信頼 性と高放熱性を有する設計とした。

3. モジュール設計

デジタルコヒーレント光通信の特徴である位相変調信号 は、多値符号化変調方式で位相変調された光信号を2つの 偏波(X偏波、Y偏波)に載せ、それらを多重することで生 成している。図2に、コヒーレントモジュールの内部構成 を示す。波長可変光源、変調素子、受光素子、そしてそれ ぞれを駆動するDriver-ICとトランスインピーダンスアンプ (TIA)を内蔵し、また、波長可変光源と変調素子を一定温 度に制御する温調素子も搭載されている。図中には、波長 可変光源と変調素子、そして受光素子間の光学結合を矢印 で示している。波長可変光源からの出射光は、ビームスプ リッタ (BS) で分岐し、一方は受光素子の局発光として、 他方は変調素子の信号光としている。また、局発光側に分 岐された光の一部は、発振波長を安定させるための波長制 御機能部にさらに分岐している。送信側の光学構成は、信 号光が変調素子に光結合され、変調素子内部で4チャネルに 分岐された後、Driver-ICからの電気信号を光の変調信号に 変換し、直交変調された2組の信号を束ねて、それぞれX偏 波とY偏波の光変調信号として変調素子から出力する。そ して、変調素子外部の偏波ビーム合波器(PBC)により合 波した後、変調信号として光ファイバで出力される。一方 の受信側の光学構成は、光ファイバで外部から入力した変 調信号が、偏波ビーム分波器(PBS)によりX偏波とY偏波

図2 IC-TROSA内部構成

に分離された後、受光素子に光結合され、90°ハイブリッ ド光ミキサ*4に入力された局発光と干渉させることで、位 相信号を強度信号に変換し、信号成分ごとに4つのチャネ ルに対応するフォトダイオード(PD)で電流に変換、そし てTIAで電圧に変換・増幅して電気信号として復調される。

規格に準拠するサイズを実現するため、小型かつ多機能 な集積半導体光素子を開発した。まず、変調素子は、マッ ハ・ツェンダー (MZ) 干渉^{*5}構造で光導波路に並進して 電極を形成し、電気光学効果*6による位相変調を行ってい るが、所望の変調効率を得るためには、導波路長が長くな り、素子サイズが大きくなる課題がある。当社は、素子内 部で導波路を180°折り返す構造とすることで、4.0mm× 4.4mmの小型化とともに、低電圧駆動を実現した⁽⁵⁾。ま た、90°ハイブリッド光ミキサを集積した受光素子は、これ まで個別の部品として実装されていた各部品の機能をチッ プ内に集積し小型化を実現した。具体的には、2つの90°ハ イブリッド光ミキサと8つのPD、さらに各入力にVOA^{*7} 機能と光強度モニタ用の4つのPDを、2.6mm×4.1mmの サイズに集積した^{(6)、(7)}。変調素子、受光素子ともに、入出 カポートにスポットサイズコンバータ (SSC)*8を集積し、 波長可変光源およびファイバとの結合効率の向上、そして 組立時の実装トレランスを拡大する素子設計としている。

4. 光学特性

波長可変光源、変調素子、受光素子は個別の半導体光素 子で構成され、また各光素子の間にはビームスプリッタな どの光学部品を搭載する必要があることから、各光素子間 の光接続は空間光学系を採用している。波長可変光源と変 調素子間に対して高い光結合を実現するために、レンズ光 学系を工夫した。波長可変光源からの出力光を1つのレンズ でコリメート光に変換し、変調素子にレンズで集光する、 図3 (a) 上図に示すような光学系が一般的であるが、波長 可変光源のレンズの位置ずれトレランスが急峻なため、レ ンズの固定ずれにより結合効率が劣化する課題がある。そ こで当社では、図3 (a) 下図に示すような、波長可変光源 の出力光を2レンズ構成でコリメート光とし、この第二レ ンズを調芯レンズとしてトレランスを緩くすることで、レ ンズ固定ずれに強い光学系を実現した。調芯レンズのトレ ランスを計算した結果を図3 (b) に示す。調芯レンズに、 例えば第一レンズの焦点距離の6倍のレンズを使用するこ とで、トレランスも約6倍に広がることがわかる。この効 果により、レンズ固定時の結合効率低下を抑制し、さらに はパッケージの環境温度の変化に対する変動にも効果が得 られる。

図4の第1軸には、IC-TROSAからのX偏波、Y偏波それ ぞれの光出力、そして合計の光出力を示し、第2軸には、X 偏波とY偏波の光出力の差 (PDL)の波長依存性を示す。光 源には、狭線幅かつ高光出力を実現した波長可変光源⁽⁸⁾を 使用し、駆動条件はレーザダイオード (LD) 電流210mA、

(a)波長可変光源-変調素子間の光学構成

(b)レンズトレランス比較

図3 波長可変光源-変調素子間の光学系

図4 送信側の光出力およびX、Y偏波光出力差

SOA^{*9}電流250mAとした。また、変調素子のMZ印加 電圧は最大光透過条件である。最大光出力は9.2dBmで、 X偏波、Y偏波とも6dBm以上の高い光出力が得られてい る。これは、変調フォーマット32QAM^{*10}を想定した伝送

図5 受信側の信号光受光感度の波長依存性

図6 受信側の受光感度温度特性

の場合、変調損失13dBとして-6.0dBm以上の出力が期待 される。

また図5に、受信側の、パッケージ温度35℃における信号 光 (Sig) の受光感度の波長依存性を示す。PD印加電圧5V、 TIA電源電圧は3.3Vである。波長1550nmで62mA/W 以上の受光感度が得られ、さらに、チャネル間偏差も± 0.3dB以下を確認した。また、図6に、信号光と局発光 (LO)、それぞれの受信感度のパッケージ温度特性を示す が、-5℃~75℃の範囲で±0.3dB以下の安定した特性が得 られている。

5. 周波数応答特性

周波数応答帯域は、搭載する半導体光素子の性能と Driver-ICとTIAの特性、そしてFPCとパッケージ間、パッ ケージとDriver-IC間、そしてパッケージとTIA間の高周波 配線設計に依存する。当社では、各光素子とDriver-IC/TIA の組み合わせで特性を最適化するとともに、高周波配線の インピーダンスを全体として調整することにより、50GHz

Gain=256

Gain=214

Gain=172

· · · Gain=0

Package temp. 35 °C

XI-Ch

5 10 15 20 25 30 35 40 45 50 55 60 65

Frequency [GHz]

図8 受信側の周波数応答特性

-20

-25

-30

0

受信側変調時CMRR 図9

以上の広帯域に渡って良好な特性を得ている。図7に、電 気から光への周波数応答特性(E/O)の4チャネルそれぞ れの評価結果を示す。3dB帯域は、800Gbit/s動作が可能 な57GHzが得られており、かつ低周波数から高周波数に 渡ってフラットな特性が得られている。

また、光から電気への周波数応答特性(O/E)として、 特定チャネル(XI)の評価結果を図8に示す。TIA設定の最 適値において、3dB帯域は60GHzが得られている。また、 受光素子では、差動信号に対しての同相信号が混じること で復調信号に影響を及ぼすため、同相排除比(CMRR)が 低いことが要求される。図9に示す通り、高周波配線設計 を最適化することにより、60GHzまで-15dB以下の良好 な特性を確認した。

6. 結 言

波長可変光源、変調素子、受光素子、温調制御素子、そしてそれらを駆動するDriver-ICとTIAをW14.1mm× L27.5mm×H3.8mmサイズの一つのパッケージに集積し、かつ各光素子を制御するICを搭載したコントロールボードも一体化して、IC-TROSA type-2に準拠するモジュールを開発した⁽⁹⁾。伝送速度800Gbit/sに対応可能な周波数応答帯域を、送信側、受信側それぞれで確認し、高光出力・高受光感度を実現した。本モジュールは、デジタルコヒーレント光トランシーバの小型化・高速化に寄与するものであり、ポスト5G時代を支える光通信システムの実現に貢献するものと確信する。

用語集

%1 OIF

Optical Internetworking Forum: 光ネットワーク技術に 関する業界団体で、標準化を行う機関。

%2 IC-TROSA

Integrated Coherent Transmit-Receive Optical Sub Assembly:送受信機能が一体となったコヒーレント通信 用モジュール。Type1とtype2があり、type1では光源が モジュールの外部、type2では内部に搭載。

%3 QSFP-DD

Quad Small Form-factor Pluggable-Double Density: トランシーバサイズ72.4mm×18.4mm×8.5mm。

※4 90°ハイブリッド光ミキサ

コヒーレントレシーバにおいて、信号光と局発光を干渉さ せて同相成分と直交成分を出力する機構。

※5 マッハ・ツェンダー干渉

導波路内で生じる多モード干渉を利用して光を分配する導 波路構造。

※6 電気光学効果

非線形光学現象の一つで、電圧を印加することで屈折率が 変化することを利用した技術。

%7 VOA

Variable Optical Attenuator: 入出力光強度を調整する 機能。

※8 スポットサイズコンバータ (SSC)

Spot-Size Converter:光のモードフィールド径を変換す る機能を持つ導波路構造。

%9 SOA

Semiconductor Optical Amplifier:半導体光増幅素子。

%10 QAM

Quadrature Amplitude Modulation: 互いに独立な2つ の同位相(in-phase)と直角位相(quadrature)の振幅 を変調する方式。

- "Implementation Agreement for Integrated Coherent Transmit-Receive Optical Sub Assembly," https://www. oiforum.com/wp-content/uploads/OIF-IC-TROSA-01.0.pdf (August, 2019)
- (2) "QSFP-DD MSA," http://www.qsfp-dd.com/
- (3) M. Takechi, Y. Tateiwa, M. Kurokawa, Y. Fujimura, H. Yagi and Y. Yoneda, "64 GBaud High-bandwidth Micro Intradyne Coherent Receiver Using High-efficiency and High-speed InPbased Photodetector Integrated with 90° Hybrid," OFC2017, paper Th1A.2 (2017)
- (4) M. Kurokawa, M. Takechi, H. Yagi, K. Sakurai, Y. Yoneda, and Y. Fujimura, "High-responsivity L-band micro intradyne coherent receiver using InP-based photodetector integrated with 90-degree hybrid,", Photonics West2018, vol. 10561, paper 1056105. doi: (2018)
- (5) H. Tanaka, T. Ishikawa, T. Kitamura, M. Watanabe, R. Yamabi, R. Yamaguchi, N Kono, T. Kikuchi, M. Seki, T. Katsuyama, M. Eakawa, and H. Shoji, "Highly Reliable and Compact InP-Based In-Phase and Quadrature Modulators for Over 400 Gbit/s Coherent Transmission Systems," IEICE Transactions on electronics, Vol.E103-C, No.11, pp. 661-668 (July, 2020)
- (6) H. Yagi, T. Okimoto, N. Inoue, K. Ebihara, K. Sakurai, M. Kurokawa, S. Okamoto, K. Horino, T. Takeuchi, K. Yamazaki, Y. Nishimoto, Y. Yamasaki, M. Ekawa, M. Takechi, and Y. Yoneda, "InP-Based Photodetectors Monolithically Integrated with 90° Hybrid toward Over 400 Gb/s Coherent Transmission Systems," IEICE Transactions on electronics, Vol.E102-C, No.4, pp. 347-356 (Apr, 2019)
- (7) T. Okimoto, H. Yagi, K. Ebihara, K. Yamazaki, S. Okamoto, Y. Ohkura, K. Horino, K. Ashizawa, M. Ekawa, and Y. Yoneda, "InP-based PIC integrated with Butt-joint Coupled Waveguide p-i-n PDs for 100GBaud Coherent Networks," OFC2021, paper F2C.6 (2021)
- (8) T. Kaneko, Y. Yamauchi, K. Uesaka, and H. Shoji, "A Single-Stripe Tunable Laser Operated at Constant Temperature Using Thermo-Optic Effect," 17th MOC, paper G-25 (Oct, 2011)
- (9) M. Kurokawa, K. Nakayama, M. Takechi, Y. Mizuno, T. Misawa, E. Banno, H. Uemura, Y. Sugimoto, S. Kumagai, T. Okimoto, N. Kono, T. Ishikawa, H. Hara, T. Kato, K. Tanaka, M. Ekawa, and K. Uesaka, "High Optical Output Power and Highresponsivity IC-TROSA for 800 Gbps applications," ECOC2021, paper We4.G.1 (2021)

........

執 筆 者 -----

黒川	宗高*	:伝送デバイス研究所	主査	

武智	勝	:伝送デバイス研究所	主幹

水野 泰孝 : 伝送デバイス研究所

三澤太一 : 伝送デバイス研究所

坂野 英一 : 伝送デバイス研究所 主席

原 弘:伝送デバイス研究所 主幹

*主執筆者

800Gbit/s 対応高光出力・高受光感度 IC-TROSA